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Taking a Scientific Approach to Science
Education, Part I-Research

Developing expertise requires intense practice that includes doing challenging
and relevant tasks, followed by feedback and reflection on one’s performance

Carl Wieman and Sarah Gilbert

During the past few decades, major advances in
the fields of cognitive psychology, brain research,
and discipline-based education research in
college science classrooms are providing guiding
principles for how to achieve learning of complex
knowledge and skills such as science. In part I, we
describe the nature of expertise and how it is
learned, primarily based on the findings of cogni-
tive psychology. We also give examples of studies
in undergraduate science classrooms and the re-
sulting student outcomes compared with those
from traditional lecture instruction.

In the second feature of this two-part series, we
will discuss the challenges and opportunities for
making these teaching methods standard prac-
tice in undergraduate science classrooms and the
results of a large-scale successful experiment in
doing so.

The Nature and Learning of Expertise

Learning to think about and use science more like
a scientist who is already working in the disci-
pline is a primary educational goal for most un-
dergraduate science courses. But exactly what is
meant by “thinking like a scientist”—in other
words, what is scientific expertise? Cognitive psy-
chologists have extensively studied expertise
across a variety of disciplines, including history,
science, and chess. They find three components
that are common to all fields:

e Jarge amounts of specialized knowledge

e a specific mental organizational framework,
unique to the field of expertise

o the ability to monitor one’s own thinking and
learning in the field of expertise

Although the first component is no surprise,
knowing lots of information is not useful if a
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person cannot quickly recognize how that infor-
mation can solve a particular problem. Experts
organize information in unique discipline-spe-
cific frameworks for efficient and accurate re-
trieval and application. This practice entails
grouping information according to certain com-
plex patterns and relationships. Much of what
are called scientific concepts are the way that
experts in a field of science link lots of informa-
tion within a single category, thus allowing them
to decide quickly where that information is rele-
vant.

The third general characteristic of expertise is
the ability to monitor one’s own thinking. When
working on a problem, a scientist is regularly
asking: Is this approach working? And do I really
understand this? Experts have the resources to
answer those questions and modify what they are
doing accordingly.

Research indicates that everyone requires
many thousands of hours of intense practice
to reach a high level of expertise. This require-
ment to spend so much time in developing exper-
tise is set by biology. The brain changes through
this intense practice, and is rewired to build these
expert capabilities. Much as a muscle develops in

» To acquire expertise, one must develop a large body of specialized
knowledge, a specific framework for that knowledge, and a capacity to
monitor his or her own thinking about that field.

» Teachers need to have mastery of a field of expertise and convey the
importance and excitement of that field.

» Many active learning approaches achieve greater learning than conven-
tional lectures.

» Preliminary findings indicate that it is better to delay the use of jargon in
classes until after students are introduced to the relevant concepts.



response to prolonged intense exercise, the brain
responds to intense “mental exercise.”

In addition to identifying generic components
of expertise, cognitive psychology research also
identified a common process required for devel-
oping expertise, called deliberate practice. It in-
volves many hours of intense practice, but that
practice must have very specific characteristics. It
must involve tasks that are difficult for learners,
requiring their full focus and effort to achieve, but
that are still attainable. The tasks must also ex-
plicitly practice the specific components of exper-
tise to be learned. Finally, there must be timely
and specific feedback, typically from a coach or
teacher, on how well a learner has done and how
to improve, and then reflection by the learner on
how to use that guidance.

Components of Scientific Expertise

A few examples of specific components of exper-
tise in any area of science include:

e recognizing and using concepts and mental
models and developing sophisticated selection
criteria for deciding when specific models are
applicable

e recognizing relevant and irrelevant informa-
tion for solving a problem

e knowingand applying a set of criteria for eval-
uating if a result or conclusion makes sense
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¢ moving fluently among specialized represen-
tations such as graphs, equations, and special-
ized diagrams.

We selected these particular examples because
they are seldom practiced with feedback in typical
undergraduate science courses.

A highly effective teacher maximizes the
amount and effectiveness of deliberate practice
by students. This role requires them to have sub-
stantially more content expertise than does tradi-
tional teaching by lecture. Teachers must have
deep expertise in their respective disciplines to
design suitable tasks that provide authentic prac-
tice of expert skills for their students at the appro-
priate level of challenge. The teachers also must
have substantial content expertise to provide spe-
cific feedback on how well the students are per-
forming those tasks and how they can improve
performance. Finally, since this practice is inher-
ently hard work, it requires motivation. An ex-
pert in the subject is uniquely positioned to help
provide that motivation by conveying the impor-
tance and excitement of the subject.

Examples of Studies on Learning
in Undergraduate Science Courses

Here are several examples of studies on learning
in science courses. The first comes from a study
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Learning gains on concept inventory for introductory physics course sections taught by 9 instructors who switched
from traditional lecture instruction (avg. gain 0.3) to an interactive method (avg. gain 0.6). (Adapted from
Hoellwarth, C., and M. J. Moelter. 2011. The implications of a robust curriculum in introductory mechanics. Am. J.
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conducted by Chance Hoellwarth and Matthew
Moelter in an introductory physics course at Cal-
ifornia Polytechnic State University. Their study
involved many different instructors of physics
across many sections and looked at the amount of
learning before and after these same instructors
changed their teaching methods.

Hoellwarth and Moelter used a validated and
widely used concept inventory test to measure
student learning gains on core concepts covered
by the course. The learning gain is a measure of
the fractional amount a student improves be-
tween their pre-course score and post-course
score on the test, with a gain of 1 meaning a
perfect score on the post-test. Hoellwarth and
Moelter collected such data for students for a
number of years while classes were taught using
traditional lecture instruction (Fig. 1, the Cal Poly
Trad. Avg. line). The average learning gain was a
bit less than 0.3, which is typical for a well-taught
lecture course on introductory physics.

Next, all the instructors switched to a “studio”
approach, in which the students worked in small
groups to carry out a common set of carefully
designed tasks, and the instructors served as fa-
cilitators/coaches. After this switch, the average
learning gain doubled to 0.6 (Fig. 1). We want to

emphasize that this change occurred with the
same set of instructors who changed the teaching
methods that they were using, after which their
students learned far more of the concepts being
covered.

Our second example is from the work of Beth
Simon and coauthors in Computer Science at
University of California, San Diego. Simon spent
a year working with us and learning about the
active learning technique for teaching introduc-
tory physics called Peer Instruction. This ap-
proach involves regularly posing questions to
students during classes, having them answer with
clickers that record their responses, and then
having them discuss the material in small groups
before re-answering those questions.

Simon worked with six other instructors to
introduce this method in four core courses in
computer science. There was a dramatic decrease
in the drop and failure rates across all four
courses, with the overall average being about 1/3
of what it was previously (Fig. 2). This figure
represents a very large number of students who,
only because the instructors changed their teach-
ing methods, are now successfully pursuing de-
grees.
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Failure rates for 4 computer science courses when instructors used standard instruction vs. interactive Peer
Instruction. (Adapted from Porter, L., C. Bailey-Lee, and B. Simon. 2013. Halving Fail Rates using Peer Instruction:
A Study of Four Computer Science Courses. Proc. 44th ACM Technical Symposium on Computer Science Education
(SIGCSE "13), p. 109-114.)
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Those two studies, the first by Hoellwarth and
Moelter and the second by Simon and her collab-
orators, looked at the final results of students
taking full courses. However, a great deal of
learning takes place outside classrooms while
doing homework assignments and studying for
exams, for example. This raises the research ques-
tion, how much difference do these research-
based teaching methods make in the learning that
takes place only in the classroom, which is the
main focus of most instructors’ attentions?

This classroom component of learning was
measured using two large sections (270 students
each) of the introductory physics course taken by
all engineering students at the University of Brit-
ish Columbia, by one of us (CW) and collabora-
tors L. Deslauriers and E. Schelew. Before the
experiment, the performances by students in two
separate sections were carefully measured and
seen to be nearly identical. Thus, within the small
statistical uncertainties of such large classes, their
scores on tests of conceptual mastery, on two
midterm exams, attitudes about physics, atten-
dance, and engagement in class were nearly iden-
tical.

One section was taught by a senior professor
who taught this class many times with good stu-
dent evaluations. Another, experimental section
was taught for only one week by someone with a
Ph.D. in physics who had limited teaching expe-
rience but was trained in the principles of learn-
ing and research-based teaching practices in the
program that we ran. Both instructors agreed on
the same set of learning objectives to be covered
in the same amount of class time. The timing of
our experiment was set so that students would be
unlikely to do much studying outside class during
the week that the experiment took place.

The instructor of the experimental section
used a number of common features of research-
based teaching. Students were assigned short, tar-
geted readings before class and given a quiz on
the reading. During class they were given ques-
tions to answer, where they would respond with
clickers or by completing worksheets. This pro-
cess involved each student in individual work and
discussions with their neighbors, during which
time the instructor would circulate through the
room listening to those discussions. There was
considerable instructor talking, but predomi-
nantly as follow-up discussion to the activity, not
preceding it. So in this way, students were prac-
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ticing scientific thinking and receiving feedback
from their fellow students and an informed in-
structor.

After the week-long experiment, the students
were given a pop quiz at the start of the following
class, a quiz that the instructors jointly developed
to probe the mastery of the learning objectives
during the experiment. The difference in perfor-
mance between the control and experimental sec-
tions is very large—an effect size of 2.5 standard
deviations—and is reflected in the entire distribu-
tion moving up (Fig. 3). This result reflects what
also is seen elsewhere, namely, these teaching
methods are not just beneficial for a subgroup of
students, they are much better for all students.
This broad applicability is not surprising; the
teaching methods are based on research on how
the human brain learns. In this study, the average
level of engagement of the students was also mea-
sured and, as one might expect, it was much
higher (85%) in the experimental section than in
the control section (45%). Many other studies
show similar results, including many in biology,
according to numerous reports in the journal
CBE-Life Sciences Education.

Impact of Jargon when Teaching Biology

We are involved in another study evaluating the
impact of jargon on learning in biology. This
work was inspired by cognitive psychology re-
search studying the limits of the short-term
working memory.

In simple terms, memory can be described as
having two components. Long-term memory has
enormous capacity and lasts for decades. The sec-
ond component, short-term working memory, is
what we use on short time scales, such as time
spent in a class, to remember and process new
information. In contrast to the long-term mem-
ory, the working memory has extremely limited
capacity, around 5-7 new items for the typical
person. As the working memory also processes
information, it operates analogously to a PC with
very little RAM. The more it is called up to re-
member and process, the less effectively it can
function.

Many studies show that anything that in-
creases demands on the working memory unnec-
essarily during a learning activity reduces learn-
ing. We, with Lisa McDonnell and Megan Barker,
designed an experiment to test if reducing the
amount of jargon introduced in a biology class
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Test scores for students taught an introductory physics module using standard instruction vs. students taught
using interactive engagement techniques. Random guessing would produce a score of 3. (Adapted from L.

Deslauriers et al., Science 332:862-864, 2011.)

would improve learning of the biology concepts.
Although the study is ongoing, preliminary re-
sults show large benefits from introducing rele-
vant jargon only after students are introduced to
the concepts.

These are just a few examples. As shown in a
meta-analysis by Scott Freeman and coauthors,
there is a vast literature of similar studies across
the science and engineering disciplines, provid-
ing overwhelming evidence that interactive
teaching approaches are much more effective
than conventional lectures at achieving learning
of complex subjects.
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