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Abstract: Coming to grips with the nature of measurement and uncertainty is often a common but implicit learning goal for many
undergraduate physics labs. As educators, our intent is to have students be able to transfer their knowledge to novel situations: we
aim to transform novices into experts. In the first-year physics laboratory at UBC, our approach to teaching weighted averages—
among other  concepts—involves  the use of invention  activities.  These invention activities  actively engage the students,  are
intended to stimulate creative thinking, are particular in their brevity and high level of structure, and are designed to precede both
explicit instruction and reinforcing practice. The merit of having students inspect the fundamental makeup of a problem before
being taught to solve it has been shown as useful support for the formation of an initial orderly schema (i.e., preparation for future
learning). The transfer of knowledge can be rather difficult to detect in a sequestered problem solving environment, but we claim
to have found some evidence of its occurrence. In a situation for which a weighted average is required, we observe significantly
more students paying attention to the uncertainty associated with the problem. Given the well-documented challenges associated
with teaching the nature of measurement and uncertainty—and while many students still fall short of remembering or applying
the correct formula of a weighted average—we interpret this transfer of a concept as a small victory.
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INTRODUCTION

   One of the key, although often implicit, components of
many  undergraduate  physics  laboratories  is  the
development  of  an  understanding  of  the  nature  of
measurement  and  its  accompanying  uncertainty;  or,  at
least,  it  should  be  [1].  A  general  finding  of  physics
education  research  is  that  students  can  perform well  on
sophisticated  tasks  while  still  holding  serious
misunderstandings about the underlying concepts. Novice
thinkers  might  ably  reproduce  various  technical
manipulations of  data in  one context  while,  at  the same
time, lack the cognitive scaffolding that permits an expert
to organize and apply this knowledge in another [2,3]. As
educators, our aim is to transform novices to experts; we
want our students to be able to transfer their knowledge to
novel situations. We have taken an invention-then-telling
approach to  teaching weighted averages and have found
evidence of transfer. The more commonly observed lack-
of-transfer can be framed in terms of students' inability to
construct  a  coherent  schema  in  the  learning  domain  to
begin with [4],  thereby impeding their  abilities  to  apply
their knowledge in new domains.
   The Concise Data Processing Assessment (CDPA) [5]
has  helped  us  to  confirm  our  intuitive  sense  that  our
students  have really struggled with,  among other  things,
the  significance  of  the  uncertainty  associated  with  a
particular measurement. We view this work as an extension
into the field of students' comprehension of experimental
evidence  and  the  models  of  student  thinking  about

dispersion in data, termed the point- and set-paradigms by
the PER group at the University of Cape Town [6,7,8].  The
point-reasoning  paradigm—novice-like  thinking—is
characterized  by  the  belief  that  each  measurement  is
independent  of  the  others  and  that  individual
measurements do not need to be combined. A measurement
is perceived as leading to a single point-like value, rather
than to establishing an interval of trustworthy values. In its
extreme form, this way of thinking manifests itself in the
notion that only one single measurement is, in principle,
required  to  establish  the  true  value.  The  set-reasoning
paradigm—expert-like  thinking—is  characterized  by  the
belief that each measurement is only an approximation of
the true value and that deviations from it are random. A
number  of  measurements  are  perceived  as  requisite  to
build a distribution that clusters around a particular value;
to get a best estimate of the true value, measurements must
be  combined using formal  mathematical  procedures  that
describe  the  data  collectively.  Student  thinking  exists
somewhere  along  the  spectrum  between  these  two
extremes, and we aim to move it closer to the expert's.

INVENTION ACTIVITIES

   The  value  of  having  students  explore  the  underlying
structure of a problem before being taught to solve it has
been demonstrated as effectual support for the construction
of an initial coherent schema (i.e., preparation for future
learning)  [9].  One  way  of  getting  students  to  explore
underlying structure is to have them complete activities as
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a  preparation  for  future  learning.  One  such  type  are
“invention activities,” which actively engage the students
and  stimulate  creative  thinking,  are  relatively  brief  and
highly structured, and precede both explicit instruction and
reinforcing  practice.  These  tasks  present  a  set  of
deliberately selected  cases  and  an  objective  to  invent  a
compact  description  (typically  mathematical)  that
generalizes across the cases. Finding the correct answer to
the task at hand is unimportant [10], as the point is only to
construct a coherent schema in a given domain so that the
students  are  prepared  for  future  learning.  The  invention
activity facilitates students in detecting important structure
in  the  given  cases  and  in  building  an  organizational
scaffolding  that  prepares  them  to  then  understand
conventional  descriptions.  Once  the  activity  has  been
completed and the students are ready to learn, they are told
the expert knowledge and follow-up with practice. Studies
on  the  added  benefits  of  the  invention-then-telling
approach  reveal  profound  differences  when  students  are
presented with more expert-like tasks that include learning
new related  ideas  and  applying their  knowledge to  new
situations [9].
   An  effective  invention  activity  has  several  specific
features  [11].  First,  the  activity  must  have  a  clear  and
challenging  goal,  often  of  developing  a  compact  and
consistent description or representation of the fundamental
attributes  across  the  given  cases.  The  solution  usually
involves integrating several features of the cases into one
single  representation  (e.g.,  a  ratio).  Second,  the  activity
should present multiple contrasting cases simultaneously to
the students. Contrasting cases assist in the development of
early knowledge because they help learners to notice new
features  or  structure and to  develop new interpretations.
Learning  to  perceive  has  been  described  in  terms  of
observing what discriminates one thing from another [12]
and contrasting cases are a powerful way to help people
discern  differentiating  properties.  Cases  should
systematically vary on key parameters so students can see
how these  variations  relate  at  a  deeper,  structural  level.
Third,  the  activity  should  involve  student  collaboration,
and be done by pairs or groups of students. This carries the
advantages  of  a  greater  number  of  ideas  considered,  as
well  as  with  peer  instruction.  It  is  also  important  to  be
mindful  of:  context  (the  task  should  involve  things
relatively familiar and meaningful to the students); level of
difficulty (the  task should be structured  so that  students
typically  achieve  partial  success);  and  the  absence  of
jargon  (the  task  should  be  free  from  subject-specific
vernacular,  which commonly triggers students to attempt
recall  of  formulae they have already learned rather  than
inducing a response more closely related to dealing with
the development of a new process).
   We have designed a set of invention activities focusing
on  some  of  the  most  difficult  concepts  covered  by  the
learning  goals  of  our  first-year  physics  lab  course  for
honours  physics  students.  This  course  consists  of  four
sections, populated by as many as forty-eight students per
section.  Each  3-hour  lab  section  is  headed  by  the  very

same  instructor,  and  is  further  supported  by  two
experienced  teaching  assistants.  The  invention  activities
are completed during lab time and are given, on average,
every other  week.  Once  the  invention  activity  has  been
completed, the students apply the new knowledge to in-lab
practice  problems  and  then,  again,  to  the  data  they
subsequently collect.  A previous article  [13]  presents  an
example of a two-part invention activity that successfully
prepares students for  lessons on creating histograms and
calculating  standard  deviations;  i.e.,  subsequent  transfer
assessment tools demonstrated that students were learning,
retaining,  and  re-applying  this  knowledge  in  a  transfer
setting. In this paper we describe an invention activity that
focuses  on  weighted  averages  and  share  encouraging,
albeit modest, signs of transfer success.

OSTRICH EGGS: A WEIGHTED
AVERAGES INVENTION ACTIVITY

   The  contrasting  cases  presented  with  the  invention
activity are shown in Tab. I (the students also received this
data  in  graphical  representation),  and  the  explicit
instructions  are  as  follows:  “During  an  episode  of  Iron
Chef, a televised cooking competition, teams are provided
with an unusual ingredient that they must use in the meal
they are preparing. In a local competition, four contestants
are  provided  with  a  selection  of  ostrich  eggs  as  their
unusual ingredient, from which they must pick only one to
cook  with.  In  order  to  select  the  biggest  egg  for  their
dishes,  the  assistant  chefs  must  find  the  largest  ostrich
eggs available. Each of the four assistant chefs chooses an
egg and measures its diameter four times, in the interest of
improving the accuracy of  their measurement.  Now they
need to report  the diameter of their chosen egg to their
head chef, but they're not sure what to do with their four
separate  measurements.  Throughout  the  next  sections,
your job will be to invent a method that each assistant chef
can use to yield a single value, which they can then report
as the diameter of their ostrich egg.”

TABLE I. The data associated with the invention activity; all the
numbers are in units of centimetres. The contrasting cases are:
Chef A has four small and equal uncertainties; Chef B has three
small and equal uncertainties and one large uncertainty; Chef C
has  one  small  uncertainty  and  three  nearly  equal  large
uncertainties; Chef D has four moderate and equal uncertainties.

Chef A Chef B Chef C Chef D

diam. ddiam diam. ddiam diam. ddiam diam. ddiam

15.2 0.5 5.3 3.0 5.3 0.5 14.0 2.0

15.9 0.5 18.7 0.5 18.7 3.0 15.3 2.0

14.1 0.5 19.1 0.5 19.1 4.0 14.9 2.0

14.8 0.5 16.9 0.5 16.9 3.0 15.8 2.0
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   To be clear—and fair—we did not expect students (in
2012: 129 students, working in 57 groups of two or three)
to invent for themselves the correct formula for a weighted
average over the course of a 30-minute exercise. Student
inventions were varied, and 20% completely neglected to
incorporate  uncertainties  into  their  methods  at  all,
calculating  simply  an  unweighted  arithmetic  mean.  A
relative majority of students (44%) attempted to weight the
data  by  the  inverse  of  their  uncertainties  but  did  not
normalize their formula, an example of which is shown in
Eq. 1 and resulting in a final answer that is dimensionally
incorrect. Only 14% of students attempted to both weight
the data and normalize their formula, an example of which
is shown in Eq. 2. The remaining 22% of invented methods
do not sort neatly into any of the above three categories.

xw=Σ
xi

δ xi

                             (1)

xw=
δ x
N

Σ
xi

δ xi

                          (2)

   Upon completion of this activity, direct instruction was
given on how an expert would manage this data but only
after  the  students  had  put  substantial  thought  into  what
would  be  needed  when  combining  such  data.  The
expression for a weighted average [14] when there are  N
separate  measurements  of  a  quantity  xi,  each  with  an
associated uncertainty si, is given by Eq. 3.

xbest=
∑ w i xi

∑ wi

, w i=
1

σi
2                    (3)

   As the weight attached to each measurement involves the
square  of  the  associated  uncertainty,  any  measurement
which is much less precise than the others contributes very
much less to the final answer.

MEASURING TRANSFER

   With respect to learning how and when to calculate a
weighted average, indications of transfer—near in context
but  distant  in  time—have  surfaced  in  a  sequestered
problem solving setting. Our assessment item, taken from
the CDPA [5] and shown in Fig. 1.

   This  item presents  two separate  measurements  and a
situation  for  which  a  weighted  mean  is  reasonably
expected.  (This is explicitly different than directly asking
students  to  calculate a  weighted average given two data
with uncertainty. When asked in this way, we have found it
to  result  in  decreased  performance  on  the  item.  From
interviews, our hypothesis for this result is that once you
have a trigger  that  has students hunting for an equation,
they become significantly less able to think outside of that
box and reason their way to a simpler solution or to simply
reproducing what  it  is  that  the  equation does. We often
underestimate  the  power  and  prevalence  of  informal
heuristics;  it  is  our  experience  that  students  will  often
prefer these over formal methods.)
   Student performance on this item, measured in a post-test
two months after the activity, is shown in Fig. 2. 

   Presented in decreasing order of sophistication of student
thinking, the five options in Fig. 2. are:
   Option b is the correct answer and represents those who
recognize  that  the  measurement  of  (90  ±  12) mL/s is
significantly poorer than (100 ± 1) mL/s. Students arrive at
this  answer  either  by  calculating  a  properly  weighted
average  or  by  discarding  the  significantly  less  reliable
measurement altogether.
   Option d represents those who recognize that important
information  is  contained  within  the  uncertainty but  who
misinterpret or misapply this information. We view this as
“not-so-wrong” an option, and argue that  it  straddles the
point-  and  set-paradigms  of  thinking.  In  selecting  this
option,  students  use  the  number  105.5  mL/s,  which  is

FIGURE 1.  The transfer question probes whether students know
that  the measurement  with  the much larger  uncertainty should
carry much less weight. The correct answer is (b). 

FIGURE 2.  The transfer results. In 2009 and 2010 (N = 254),
students  received  traditional  instruction  for  how and  when  to
calculate  a  weighted  average.  In  2011  (N  =  132),  the  first
iteration of our invention activity focusing on weighted averages
was deployed. In 2012 (N = 129), an improved second iteration,
presented in this paper, was used.

119



exactly halfway between the values of (90 + 12) mL/s and
(110 - 1) mL/s. This thinking is point-like in that it assigns
particular  importance  to  a  singular  value;  namely,  the
midpoint of the two values. But this thinking is also set-
like in that it treats the data as two separate distributions
that cluster around particular values.
   Option e was initially included to provided an apparent
balance in the options presented and was previously not a
known  model  of  student  thinking.  Ensuing  student
interviews have shown that  some who select  this option
have weighted the relative importance of the numbers in a
reasonable way but subsequently struggle with the algebra
that follows.
   Option c represents those who discard the more reliable
measurement.
   Option  a represents those who ignore the information
contained  in  the  uncertainty  altogether  and  calculate
simply an arithmetic mean.
   These  results  imply progress  when compared  against
previous years in which an equal amount of in-lab, time-
on-task was spent on direct instruction of and practice with
weighted averages. The number of students who calculate
an unweighted arithmetic average (option a) has decreased
considerably from four years ago, from 30% to 12%, in
conjunction  with  the  introduction  and  refinement  of  the
invention activity. A chi square test of proportions, using a
2x2  contingency  table  of  year  by  correctness, was
conducted  to  compare  the  fraction  of  students  selecting
option a over the years. There was a statistically significant
difference in the  proportion of students selecting option a
in 2009 & 2010 (75 of 254 students) and in 2012 (15 of
129 students): c2 (1) = 15.25,  p = 0.0001.  These results
suggest that the Ostrich Eggs invention activity does have
an  effect  on getting students  to  consider  the uncertainty
associated  with  data.  At  the  same  time,  the  number  of
students who consider the uncertainties in their solutions
(option  d)  appears  to  have  increased,  although  not  by
enough  to  claim statistical  significance.  This  shift  away
from ignoring uncertainties entirely towards incorporating
them (i.e.,  “paying attention” to  them) in  their  solutions
supports  the  notion  that  high-quality  invention  activities
can  indeed  better  prepare  students  to  learn  from  future
instruction. While the number of students who chose the
correct  answer  (option  b)  has  not  increased,  we  do  see
improvement  in  the  quality  of  students'  mental  models,
evidenced  by  the  majority  of  them  who  take  the
uncertainties into consideration.

CONCLUSION

   The activity described above has been designed to prime
students' minds for a subsequent lecture on calculating a
weighted  average.  In  getting  students  to  invent  original

solutions to novel problems, the activities serve to prepare
students for future learning. The transfer of knowledge can
be  particularly  difficult  to  observe  in  a  sequestered
problem solving scenario, but we have found evidence that
it is occurring. Many students are still not remembering the
entire  formula required  to  calculate  a  weighted  average,
but  they are  now transferring  in  “attention  paid”  to  the
uncertainty associated with the problem. Considering how
difficult  it  has  been  to  make inroads with the  nature of
measurement and uncertainty, we interpret this transfer of
a concept a minor victory.
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