
Physics of Materials, PHYS315, Vladimir Hinkov (University of British Columbia).

Problem set 3, due on October 27, before the beginning of the lecture

1 Order parameter of a nematic liquid crystal (group exercise, 15 points)

As discussed in class, the order parameter η is a physical quantity reflecting the degree of order
of a given system; it is η = 0 for full disorder and η = 1 when the system is fully ordered. One
possible way to define an order parameter for a nematic liquid crystal is the following:

η = 〈3 cos2 θ − 1

2
〉 (1)

where

〈f(θ)〉 =

∫ π

θ=0
f(θ)p(θ) sin(θ)dθ (2)

is the expectation value of f(θ), i.e. the average value of f(θ) over all molecules, p(θ) is the
probability density of finding a molecule at an angle θ from the director orientation (Fig. 1) and
the factor sin(θ) is because we are working in spherical coordinates.

a) Using the above formulas, show that for an isotropic distribution, i.e. p(θ) = 1, η = 0, as
expected.

b) Show that for the case of perfect orientation of all molecules along the director, η = 1.
(Hint: One could in principle use the formula (2), however one would need to deal with the
delta-function, δ(θ); there is much simpler way: what is the expectation value in (1) if θ is fixed
for all molecules?) What is η in the case of all molecules distributed in a plane perpendicular
to the director?

c) In an ordered magnet the value of its order parameter (macroscopic magnetization) changes
by a factor of -1 when rotated through 180◦. Why does the liquid crystal not exhibit a macro-
scopic polarization, although individual molecules can have a permanent dipole moment? It
follows that the Gibbs free energy function G(η, T ) cannot be symmetric with respect to η and
we include an odd power in the series expansion:

G(η, T ) = a(T − T ∗)η2 − Cη3 +Bη4 (3)

where a, C and B are positive parameters and T ∗ is a characteristic temperature of the system,
which we will show to be related to the nematic transition temperature Tnem but not identical

d

θ

Figure 1: The deviation of the orientation of each individual molecule from the director orienta-
tion is θ. θ will fluctuate with time but we assume that a “snapshot” at a given time
will yield a representative distribution of different θ angles.
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Figure 2: Comparison of the behavior of second order, (a), and first order, (b), phase transitions.
The dependence of the Gibbs free energy G on the order parameter η is shown. In the
case of a second order phase transition, the total minimum is either at η = 0 or at
finite η, and the order parameter sets in gradually below the transition temperature.
In the case of a first order phase transition, at the transition temperature, there is the
same minimum at η0 = 0 and at a finite η1 (i.e. G(η0) = G(η1)) while the minimum
is at η = 0 above the transition temperature and at finite η below. Consequently, the
order parameter will jump from η = 0 to η1 at the transition temperature.

with it. To get an idea of the behavior at temperatures far above and far below the transition
temperature, plot G for a(T − T ∗) = B = C = 1 and −a(T − T ∗) = B = C = 1, respectively
(you can use a computer program if you want).

Here we want to show that the description of a nematic liquid crystal by eq. (3) results in a first
order transition. The relevant properties of a first-order phase transition become apparent from
Fig. 2: In particular, at the transition temperature Tnem there are two minima, at η = η0 = 0
and η1 6= 0, with G(η0) = G(η1).

This leads to two equations which must simultaneously hold at Tnem: dG/dη = 0 and G = 0.
Write down these equations. Show that η = 0 is a common solution. Show that there is a
second solution, η = C/2B. Which is the corresponding temperature, i.e. at which T = Tnem
does η = C/2B solve both dG/dη = 0 and G = 0? Hint: You have two equations dG/dη = 0
and G = 0, and two variables...

Finally, calculate how η depends on T for T < Tnem.

2 Thermodynamic finger exercise (10 points)

a) In class we defined the specific heat at constant volume, cV , through the internal energy U ,
and at constant pressure, cp, through the enthalpy H. Express cV through the free energy F
and cp through the Gibb’s free energy G.

b) Derive a general expression for the entropy S at fixed p from the differential form of the
Gibb’s free energy dG given in class. We modeled the special case of a second-order phase
transition by the following Gibb’s free energy

G = G0 + a(T − Tc)η2 +Bη4 (4)

and derived an expression for η which minimizes G. What is then the minimal G above and
below Tc, respectively? From the expressions for this minimal G, derive S above and below
Tc. Derive expressions for cp below and above Tc. Sketch how G, S and cp behave across Tc
(smooth? Is there a jump or a kink?)
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3 Bravais lattices in two dimensions (11 points)

Here we want to review different lattices in two dimensions. In Fig. 3a), you see a square lattice;
obviously, such a lattice is a Bravais lattice and a possible set of primitive vectors is shown in the
figure. With respect to the given cartesian coordinate system defined by the two perpendicular,
equally long vectors z1 and z2, these vectors are a1 = 2z1 and a2 = 2z2.

For each of the five lattices shown in Fig. 3a)–e), indicate whether it is a Bravais lattice, and
if yes, draw the following:

(i) a set of primitive unit vectors (also provide a formula how they are defined with respect
to the given cartesian coordinate system, following the example above);

(ii) a possible choice of a primitive unit cell which is not the Wigner-Seitz cell;
(iii) the Wigner-Seitz cell;
(iv) For each lattice (out of the five shown) which is not a Bravais lattice by itself, show how

it can be represented by a Bravais lattice with a basis of two instead of one individual atoms,
indicating a set of primitive unit vectors defining the points of the underlying Bravais lattice.
Calculate these primitive unit vectors with respect to the given coordinate system; also calculate
the position of the atoms in the basis with respect to the given coordinate system. (Hint: the
origin of the given coordinate system is already at one of the possible Bravais lattice points...)
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Figure 3: Different two-dimensional lattices. Panel a) shows a square Bravais lattice; a set of
possible primitive vectors is defined by a1 = 2z1 and a2 = 2z2. In b), tan θ = 2, and
in d) and e), θ = 60◦.
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