
IV.6 Principal Coordinates Analysis (PCA)

IV.6.1 Introduction

Imagine we are interested in comparing a selection of n different wines from different vine-
yards. A connoisseur is given samples from pairs of wines and compares them, giving a
(somewhat subjective) comparison rating for how similar or dissimilar they are: 0 if the
wines cannot be told apart up to 10 if they are totally different. This comparison rating is
referred to as the dissimilarity between the two wines. At the end of the day the connois-
seur has compared all the different wines and assigned ratings to describe the similarity and
dissimilarity of each pair. This data is combined into a dissimilarity matrix T where Tij is
the rating given to the comparison between wines i and j.

Even for a moderate selection, trying to make sense out of this data can be challenging. We
want to group the wines into similar-tasting families but, unless there is a very conspicuous
characteristic that is different (such as half of the selection being red and the other half
white), it may be difficult to identify significant patterns or relationships just by staring at
the data.

The idea of Principal Coordinates Analysis (PCA) is firstly to represent the different objects
under consideration (in this case the wines) graphically, as points v1, v2, . . . , vn in Rp for
some suitable choice of dimension p. The distance ‖vi − vj‖ between points in the plot is
chosen to reflect as closely as possible the entry Tij in the dissimilarity matrix T . Our eye is
much more capable of spotting relationships and patterns in such a plot than it is spotting
them in the raw data. However another problem arises in doing this: we can only visualize
two or possibly three dimensions (p = 2 or 3) whereas the data would most naturally be
graphed in a much higher dimensional, possibly even n− 1-dimensional, space. The second
key idea of PCA is to reduce the number of dimensions being considered to those in which
the variation is greatest.

IV.6.2 Definitions and useful properties

A real square matrix A is called positive definite if

〈x, Ax〉 > 0

for any x 6= 0.

A real square matrix A is called positive semi-definite if

〈x, Ax〉 ≥ 0

for any x 6= 0.
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IV.6 Principal Coordinates Analysis (PCA)

A real matrix of the form ATA for any real matrix A is always positive semi-definite because

〈x, ATAx〉 = 〈Ax, Ax〉 = ‖Ax‖2 ≥ 0.

A positive semi-definite matrix has all non-negative eigenvalues. The proof is as follows.
Let v be an eigenvector of A with eigenvalue λ so

Av = λv.

Because A is positive semi-definite we have

〈v, Av〉 ≥ 0.

Using the fact that v is an eigenvector we also have

〈v, Av〉 = 〈v, λv〉 = λ〈v,v〉.

Combining these two results and remembering that 〈v,v〉 > 0 for an eigenvector, we have
our result:

λ ≥ 0.

IV.6.3 Reconstructing points in Rp

We begin with a simple example, taking our objects to be a set of n points w1, w2, . . . , wn

in Rp. We take the dissimilarity between objects i and j to be the usual distance between
those points

Tij = ‖wi −wj‖.

Is it possible to reconstruct the relative location of the points from the data in T alone?

It is important to notice that any reconstruction that we find is not unique. We are free
to rotate, reflect and translate the points and they still satisfy the only requirement that we
make of them, namely that the distances between the points are as specified.

Reconstructing two points in Rp

Consider two points, w1 and w2, that are a known distance, say 2, apart. A single line
can always be placed between any two points and therefore we expect that the points can
be represented in one dimension. If we only know the distance between the points, then a
possible representation of them is v1 =

[
0
]

and v2 =
[
2
]
.
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Reconstructing three points in Rp

Now consider three points, w1, w2 and w3 with dissimilarity matrix:

T =

0 3 5
3 0 4
5 4 0

 .
A plane can always be placed through any three points and therefore we expect that the points
can be represented in two dimensions. We can find such a representation using trilateration.
First we choose a point to represent w1:

1

Next we draw a circle of radius 3 centred at our first point and choose a second point on
the circle to represent w2:

1 2

3

Finally we draw a circle of radius 5 centred at our first point and a circle of radius 4 centred
at our second point and choose our third point to be at one of the intersections of these two
circles to represent w3:

1

3

2

4
3

5

Thus we have been able to create a representation of the three points: v1 =
[
0
0

]
, v2 =

[
3
0

]
and v3 =

[
3
4

]
.
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IV.6 Principal Coordinates Analysis (PCA)

Arbitrary number of points in Rp

The approach above works for a low dimensional space and with few points, but how can we
handle many dimensions and/or many points?

Let v1, . . . , vn be the representation of the points that we are trying to find. We assume
that these points are in Rn (from the discussion above we can infer that the points can be
chosen to be in an n− 1 dimensional space, but choosing n makes the analysis below a little
cleaner).

Let V be the matrix whose rows are the vectors for the points we are trying to find:

V =


vT

1

vT
2

vT
3
...

vT
n


We assume that the points are chosen such that the sum of each column of V is 0, in other
words the centroid of the set of points is placed at the origin of Rn. We are allowed to do
this because of the translational freedom that we have in finding a solution.

All we know about the points is the distance that they are required to be apart. We have

(Tij)2 = ‖vi − vj‖2 = 〈vi − vj ,vi − vj〉
= 〈vi,vi〉+ 〈vj ,vj〉 − 2〈vi,vj〉. (IV.1)

It is easier to work with this equation in matrix form so we make the following definitions.
Let B be the matrix whose entries are the inner products between the points

Bij = 〈vi,vj〉 = vT
i vj ,

or equivalently
B = V V T .

Let ∆ be the matrix containing the squares of the dissimilarities with entries

∆ij = (Tij)2.

Finally, let Q be the matrix with entries

Qij = ‖vi‖2

or equivalently
Q = qeT ,
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where q =


‖v1‖2
‖v2‖2

...
‖vn‖2

 and e =


1
1
...
1

.

We can now rewrite (IV.1) as the matrix equation

∆ = Q+QT − 2V V T . (IV.2)

We want to find the matrix V , and know the matrix ∆. So the next step is to eliminate
Q from this equation. Notice that qeTe = nq. This suggests that post-multiplying equation
(IV.2) by

H = I − 1
n
eeT

will eliminate Q:
QH = qeT

(
I − (1/n)eeT

)
= qeT − qeT = 0,

where 0 here represents the zero matrix. We also have that H is symmetric (H = HT ) so
HQT = HTQT = (QH)T = 0. Therefore pre-multiplying by H eliminates QT . Applying
these operations to (IV.2) we obtain the matrix equation

H∆H = −2HV V TH = −2HV V THT = −2HV (HV )T .

We can simplify this by finding HV :

HV =
(
I − 1

n
eeT

)
V = V − 1

n
eeTV

but each entry of the row vector eTV is the sum of each column of V which we assumed was
zero. Therefore eTV = 0T and

HV = V.

We have now obtained the equation

V V T = −1
2
H∆H,

which is an equation that we are able to solve to find V . The matrix on the left is symmetric
and positive semi-definite (using the properties we saw in §IV.6.2). The matrix on the right
is symmetric (the dissimilarity matrix should be symmetric). In order for a solution to exist,
it must also be positive semi-definite. In the example we are considering, we know that a
solution of the problem exists because the dissimilarity matrix was constructed from a set of
points in Rn. Therefore in this case the matrix on the right must be positive semi-definite.

We can find a solution as follows. Because −(1/2)H∆H is a real symmetric matrix it can
be diagonalized as

−1
2
H∆H = SDST ,
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IV.6 Principal Coordinates Analysis (PCA)

where S is the matrix of normalized eigenvectors and D is the diagonal matrix of eigenvalues.
Because it is positive semi-definite all eigenvalues are non-negative, and we can take the
square root D1/2 of D, where the entries on the leading diagonal are the square roots of the
eigenvalues. We can now write

V V T = (SD1/2)(SD1/2)T . (IV.3)

and a solution for V is

V = SD1/2

Cautionary note: all we have actually shown is (IV.3). Our claim that SD1/2 is a possible
solution for V needs more justification. It is not immediately clear that just because this
relation between V and SD1/2 holds the rows of SD1/2 must satisfy the same distance
requirements as the rows of V . This result is in fact a particular property of matrices of the
form AAT . Assuming AAT = BBT , the fundamental idea is that the entries ij of AAT and
BBT are the dot products of the rows i and j of A and B respectively. This means that
corresponding rows of A and B must have the same length, and also the angle between rows
i and j of A must equal the angle between the same rows of B for all i and j. Therefore the
points represented by the rows of A and the points represented by the rows of B have the
same magnitudes and relative angles and so we can find rotations and reflections mapping
the points of A to the points of B.

Example

Consider the five points in R2 given by

w1 =
[
1
0

]
, w2 =

[
2
3

]
, w3 =

[
2
5

]
, w4 =

[
1
−2

]
, w5 =

[
−3
−3

]
,

−4

−2

 0

 2

 4

 6

−4 −3 −2 −1  0  1  2  3

3

5

4

1

2
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The dissimilarity matrix for these points is

T =


0

√
10
√

26 2 5√
10 0 2

√
26
√

61√
26 2 0 5

√
2
√

89
2

√
26 5

√
2 0

√
17

5
√

61
√

89
√

17 0


Knowing only T , can we find a representation of the points?

Using MATLAB/Octave we have

> T
T =

0.00000 3.16228 5.09902 2.00000 5.00000
3.16228 0.00000 2.00000 5.09902 7.81025
5.09902 2.00000 0.00000 7.07107 9.43398
2.00000 5.09902 7.07107 0.00000 4.12311
5.00000 7.81025 9.43398 4.12311 0.00000

> H = eye(5)-1/5*ones(5,1)*ones(1,5);
> Delta = T.^2; % this finds the square of each element in T
> [S D] = eig(-0.5*H*Delta*H)
S =
-0.0450409 0.9633529 0.2644287 0.2207222 0.7175132
0.3690803 0.0063295 0.0398071 -0.6871823 0.3848777
0.6031796 0.1253245 -0.3538343 -0.2243887 -0.3502305
-0.2791402 -0.1936833 0.6580702 -0.5270235 -0.4611091
-0.6480788 0.1367176 -0.6084717 -0.3885333 0.0419632

D =
56.60551 0.00000 0.00000 0.00000 0.00000
0.00000 -0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 5.79449 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 -0.00000

Remember that MATLAB/Octave returns the eigenvectors normalized, so we do not need
to normalize the columns of S.

> V = S*D^0.5
V =
Columns 1 through 3:
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IV.6 Principal Coordinates Analysis (PCA)

-0.33887 + 0.00000i 0.00000 + 0.00000i 0.63653 + 0.00000i
2.77684 + 0.00000i 0.00000 + 0.00000i 0.09582 + 0.00000i
4.53812 + 0.00000i 0.00000 + 0.00000i -0.85174 + 0.00000i
-2.10016 + 0.00000i -0.00000 - 0.00000i 1.58409 + 0.00000i
-4.87593 + 0.00000i 0.00000 + 0.00000i -1.46470 + 0.00000i

Columns 4 and 5:

0.00000 + 0.00000i 0.00000 + 0.00000i
-0.00000 + 0.00000i 0.00000 + 0.00000i
-0.00000 + 0.00000i -0.00000 - 0.00000i
-0.00000 + 0.00000i -0.00000 - 0.00000i
-0.00000 + 0.00000i 0.00000 + 0.00000i

Each row of V is now one of the points we want to find in R5. Notice that only the first
and third entries of each row are non-zero (this is a result of the second, fourth and fifth
eigenvalues in D being zero). Therefore we can plot the result in R2 as follows:

> plot(V(:,1),V(:,3),’rs’)
> axis([-6 5 -2 2])

and we obtain:

−2

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

 2

−6 −4 −2  0  2  4

1

2

4

35

This plot is rotated, translated and reflected from the plot that we started off with, but
the relative positions of the points are the same as those in the original.

IV.6.4 The dimension of the plot

In the example above, if we had only been given the dissimilarity matrix T our best guess
initially would have been that the 5 points came from a four-dimensional space. However
we saw that we only needed two dimensions to plot the data: the components in the second,
fourth and fifth coordinate directions were all zero because the corresponding eigenvalue
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was zero. Often most of the variation takes place in only a few directions (the directions
of the largest eigenvalues) and we can look at the projection of the data points onto those
coordinate directions (in the example above the first and third coordinates). Because the
matrix S in the construction contains orthonormal vectors, the coordinate axes chosen in
this way will be orthonormal.

There is a bit of an art (and controversy) to choosing the correct number of coordinates,
but if the first two or three eigenvalues are substantially larger than the remainder it is
reasonably safe just to use those for a comparison.

IV.6.5 Real examples

In most real-life applications, the dissimilarity matrix T does not produce a matrix −H∆H/2
that is positive semi-definite and so taking the square root of the matrix of eigenvalues D
gives imaginary numbers. Consequently the decomposition V = SD1/2 does not make sense.

An example is four cities connected by roads as follows:

4

3

1

2

We take the dissimilarity between two cities to be the driving time between them. If the
journey time between cities along each road is exactly 1 hour (some roads are much better
than others), then cities 1, 2 and 3 must all be an equal distance 2 apart in our representation.
Therefore they are the vertices of an equilateral triangle. But now city 4 is only an hour
apart from all three other cities and so must be a distance 1 apart from all the vertices of
the equilateral triangle. But this is impossible (even with arbitrarily many dimensions):

2

13

2

1
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IV.6 Principal Coordinates Analysis (PCA)

One solution for this problem is to use only the coordinate directions with real eigenvalues.
If these eigenvalues have significantly larger magnitudes than the negative eigenvalues, then
this still produces a useful representation of the objects under consideration. This is the
approach we will use in the examples below.

A difficult aspect of multi-dimensional scaling is determining how best to measure the
dissimilarity between objects. This will depend on such things as what particular properties
of the objects we are interested in and whether this data is quantitative (for example if we
are comparing people we may be interested in their heights or their hair or eye colour). For
our examples, we will assume that an appropriate choice of measurement has already been
made.

Example 1

Take the set of objects to be the following towns and cities: Dawson Creek, Fort Nelson,
Kamloops, Nanaimo, Penticton, Prince George, Prince Rupert, Trail, Vancouver and Victo-
ria. We index them as

1 Dawson Creek
2 Fort Nelson
3 Kamloops
4 Nanaimo
5 Penticton
6 Prince George
7 Prince Rupert
8 Trail
9 Vancouver

10 Victoria

If our interest in the cities is their relative geographical location, then an appropriate
measure of dissimilarity is the distance ‘as the crow flies’ between them. Then the entry T11

is the distance from Dawson Creek to itself (so 0 km), T12 and T21 are the distance between
Dawson Creek and Fort Nelson, 374 km, and so on. The full dissimilarity matrix in km is:

T =



0 374 558 772 698 261 670 752 756 841
374 0 913 1077 1059 551 695 1124 1074 1159
558 913 0 306 151 384 782 261 260 330
772 1077 306 0 318 530 718 453 58 98
698 1059 151 318 0 535 912 140 260 295
261 551 384 530 535 0 504 629 524 610
670 695 782 718 912 504 0 1041 753 816
752 1124 261 453 140 629 1041 0 395 417
756 1074 260 58 260 524 753 395 0 86
841 1159 330 98 295 610 816 417 86 0


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We can now find the PCA representation of the points using MATLAB/Octave (the m-file
is on the web in distance.m):

> T = [0. 374. 558. 772. 698. 261. 670. 752. 756. 841.;
374. 0. 913. 1077. 1059. 551. 695. 1124. 1074. 1159.;
558. 913. 0. 306. 151. 384. 782. 261. 260. 330.;
772. 1077. 306. 0. 318. 530. 718. 453. 58. 98.;
698. 1059. 151. 318. 0. 535. 912. 140. 260. 295.;
261. 551. 384. 530. 535. 0. 504. 629. 524. 610.;
670. 695. 782. 718. 912. 504. 0. 1041. 753. 816.;
752. 1124. 261. 453. 140. 629. 1041. 0. 395. 417.;
756. 1074. 260. 58. 260. 524. 753. 395. 0. 86.;
841. 1159. 330. 98. 295. 610. 816. 417. 86. 0.];

> Delta = T.^2;
> H = eye(size(T)) - 1./length(T)*ones(length(T),1)*ones(1,length(T));
> [S D] = eig(-0.5*H*Delta*H);

We would like to sort the eigenvalues such that the largest corresponds to the first coordinate,
the next largest to the second, and so on. We can use the MATLAB/Octave command sort
for this:

> [lambda,I] = sort(diag(D),’descend’)
lambda =

1.4615e+06
4.4276e+05
7.6808e+02
2.4605e+02
1.5347e+02
3.9772e+00
1.4233e-11
-2.9002e+02
-4.5881e+02
-1.1204e+03

I =
1
2
4
7
8
10
9
6
5
3
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Here the vector lambda is the eigenvalues sorted from largest to smallest and I contains the
original indices of the elements in the sorted vector. We see that the two largest eigenvalues
have substantially greater magnitudes than the following ones. This is what we would expect:
it should be approximately possible to represent these towns and cities as points on a plane,
so only two dimensions are needed. We also notice that it is not possible to represent the
points perfectly in any dimensional space because there are some negative eigenvalues. These
result partly from the fact that the distances are measured along the (curved) surface of the
Earth and partly from rounding the distances in T .

If we just take the first two coordinates and plot the points

> X = S(:,I(1))*sqrt(D(I(1),I(1)));
> Y = S(:,I(2))*sqrt(D(I(2),I(2)));
> plot(X,Y,’bo’);
> axis equal

we obtain
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Prince Rupert

Nanaimo

Vancouver
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Kamloops

Dawson Creek

Trail

Penticton

Victoria

Notice that although the orientation of the cities is both rotated and reflected, their relative
positions are exactly what we would expect.

Example 2

Instead, we may be interested in how easily and quickly we can get between the different
towns and cities. In this case, a more appropriate measure of dissimilarity is the driving
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distance between the different towns and cities, or better still the driving time between
them. The dissimilarity matrix for driving times (in hours and minutes) is:

T =



0 : 00 5 : 27 10 : 06 15 : 02 12 : 14 4 : 27 12 : 38 15 : 28 12 : 47 15 : 20
5 : 27 0 : 00 15 : 42 20 : 39 17 : 50 10 : 03 18 : 14 20 : 55 18 : 23 20 : 56

10 : 06 15 : 42 0 : 00 5 : 49 2 : 53 5 : 39 13 : 49 5 : 43 3 : 33 6 : 04
15 : 02 20 : 39 5 : 49 0 : 00 8 : 45 10 : 35 18 : 46 9 : 24 2 : 27 1 : 31
12 : 14 17 : 50 2 : 53 8 : 45 0 : 00 7 : 47 15 : 57 3 : 29 4 : 25 6 : 56
4 : 27 10 : 03 5 : 39 10 : 35 7 : 47 0 : 00 8 : 11 11 : 12 8 : 20 10 : 52

12 : 38 18 : 14 13 : 49 18 : 46 15 : 57 8 : 11 0 : 00 19 : 23 16 : 31 19 : 03
15 : 28 20 : 55 5 : 43 9 : 24 3 : 29 11 : 12 19 : 23 0 : 00 7 : 09 9 : 41
12 : 47 18 : 23 3 : 33 2 : 27 4 : 25 8 : 20 16 : 31 7 : 09 0 : 00 3 : 03
15 : 20 20 : 56 6 : 04 1 : 31 6 : 56 10 : 52 19 : 03 9 : 41 3 : 03 0 : 00


If we try the same code as used for the geographical distance with the dissimilarity matrix

containing the driving times between the cities we find

lambda =
4.7754e+02
1.7095e+02
7.5823e+01
1.0814e+01
1.2364e+00
-1.4217e-15
-4.6973e-01
-3.4915e+00
-1.0043e+01
-3.3626e+01

and using just the first two coordinates we obtain this plot:
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We notice that the structure is similar to that found for the distances, but there are a number
of important differences. Roughly speaking major roads appear as straight lines on this plot:
Vancouver to Kamloops is approximately Highways 1 and 5, then north from Kamloops to
Prince George is Highway 97. Dawson Creek and Fort Nelson are found continuing along
Highway 97 from Prince George while Prince Rupert is found by turning on to Highway
16. However there is a problem with what we have found: Trail is placed almost on top of
Nanaimo and Victoria, when it is at the other side of the Province!

The problem is that we need to consider more principal coordinates to distinguish between
Trail and Vancouver Island: the third eigenvalue is not much smaller than the second. If we
add another principal coordinate

> X = S(:,I(1))*sqrt(D(I(1),I(1)));
> Y = S(:,I(2))*sqrt(D(I(2),I(2)));
> Z = S(:,I(3))*sqrt(D(I(3),I(3)));
> plot3(X,Y,Z,’bo’)
> axis equal

then we see the following:
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(The plot is much easier to understand if you plot it yourself and rotate it. The m-file is on
the website in hours.m)

We can now identify Highways 3 and 97 to Trail branching off at Kamloops and the route
by ferry to Vancouver Island (where a large part of the time is the ferry crossing which is
similar for both Nanaimo and Victoria).
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