


Chapter III

Orthogonality

65



III Orthogonality

III.1 Orthogonality and Projections

III.1.1 Orthogonal vectors

Recall that the dot product, or inner product of two vectors

x =


x1

x2
...
xn

 y =


y1

y2
...
yn


is denoted by x · y or 〈x,y〉 and defined by

xTy =
[
x1 x2 · · · xn

]

y1

y2
...
yn

 =
n∑
i=1

xiyi

Some important properties of the inner product are symmetry

x · y = y · x

and linearity
(c1x1 + c2x2) · y = c1x1 · y + c2x2 · y.

The norm, or length, of a vector is given by

‖x‖ =
√

x · x =

√√√√ n∑
i=1

x2
i

An important property of the norm is that ‖x‖ = 0 implies that x = 0.

The geometrical meaning of the inner product is given by

x · y = ‖x‖‖y‖ cos(θ)

where θ is the angle between the vectors. The angle θ can take values from 0 to π.

The Cauchy–Schwarz inequality states

|x · y| ≤ ‖x‖‖y‖.

It follows from the previous formula because | cos(θ)| ≤ 1. The only time that equality occurs
in the Cauchy–Schwarz inequality, that is x ·y = ‖x‖‖y‖, is when cos(θ) = ±1 and θ is either
0 or π. This means that the vectors are pointed in the same or in the opposite directions.

66



III.1 Orthogonality and Projections

The vectors x and y are orthogonal if x · y = 0. Geometrically this means either that one
of the vectors is zero or that they are at right angles. This follows from the formula above,
since cos(θ) = 0 implies θ = π/2.

Another way to see that x · y = 0 means that vectors are orthogonal is from Pythagoras’
formula. If x and y are at right angles then ‖x‖2 + ‖y‖2 = ‖x + y‖2.

But ‖x + y‖2 = (x + y) · (x + y) = ‖x‖2 + ‖y‖2 + 2x · y so Pythagoras’ formula holds
exactly when x · y = 0.

To compute the inner product of (column) vectors X and Y in MATLAB/Octave we use
the formula x · y = xTy. Thus the inner product can be computed using X’*Y. (If X and Y
are row vectors, the formula is X*Y’.)

The norm of a vector X is computed by norm(X). In MATLAB/Octave inverse trig functions
are computed with asin(), acos() etc. So the angle between column vectors X and Y could
be computed as

> acos(X’*Y/(norm(X)*norm(Y)))

III.1.2 Orthogonal subspaces

Two subspaces V and W are said to be orthogonal if every vector in V is orthogonal to every
vector in V . In this case we write V ⊥W .

In this figure V ⊥W and also S ⊥ T .

67



III Orthogonality

A related concept is the orthogonal complement. The orthogonal complement of V , denoted
V ⊥ is the subspace containing all vectors orthogonal to V . In the figure W = V ⊥ but T 6= S⊥

since T contains only some of the vectors orthogonal to S.

If we take the orthogonal complement of V ⊥ we get back the original space V : This is
certainly plausible from the pictures. It is also obvious that V ⊆ (V ⊥)⊥, since any vector in
V is perpendicular to vectors in V ⊥. If there were a vector in (V ⊥)⊥ not contained in V we
could subtract its projection onto V (defined below) and end up with a non-zero vector in
(V ⊥)⊥ that is also in V ⊥. Such a vector would be orthogonal to itself, which is impossible.
This shows that

(V ⊥)⊥ = V.

One consequence of this formula is that V = W⊥ implies V ⊥ = W . Just take the orthogonal
complement of both sides and use (W⊥)⊥ = W .

III.1.3 The fundamental subspaces of a matrix revisited

Recall that we discovered orthogonality relations between vectors in the fundamental sub-
spaces of an incidence matrix for a graph. Now we will show that these relations are valid
for any matrix A.

These relations are based on the formula

(ATx) · y = x · (Ay)

This formula follows from the product formula (AB)T = BTAT for transposes, since

(ATx) · y = (ATx)Ty = xT (AT )Ty = xTAy = x · (Ay)

Let A be an m× n matrix. Then N(A) and R(AT ) are subspaces of Rn while N(AT ) and
R(A) are subspaces of Rm. These two pairs of subspaces are orthogonal:

N(A) = R(AT )⊥

N(AT ) = R(A)⊥

We will show that the first equality holds for any A. The second equality then follows by
applying the first one to AT .

First, we show that N(A) ⊆ R(AT )⊥. To do this, start with any vector x ∈ N(A). This
means that Ax = 0. If we compute the inner product of x with any vector in R(AT ), that
is, any vector of the form ATy, we get (ATy) · x = y · Ax = y · 0 = 0. Thus x ∈ R(AT )⊥.
This shows N(A) ⊆ R(AT )⊥.

Now we show the opposite inclusion, R(AT )⊥ ⊆ N(A). This time we start with x ∈
R(AT )⊥. This means that x is orthogonal to every vector in R(AT ), that is, to every

68



III.1 Orthogonality and Projections

vector of the form AT0. So (AT0) · x = 0 · (Ax) = 0 for every 0. Pick 0 = Ax. Then
(Ax) · (Ax) = ‖Ax‖2 = 0. This implies Ax = 0 so x ∈ N(A). We can conclude that
R(AT )⊥ ⊆ N(A).

These two inclusions establish that N(A) = R(AT )⊥.

Let’s verify these orthogonality relations in an example. Let

A =

1 2 1 1
1 3 0 1
2 5 1 2


Then

rref(A) =

1 0 3 1
0 1 −1 0
0 0 0 0

 rref(AT ) =


1 0 1
0 1 1
0 0 0
0 0 0


Thus we get

N(A) = span



−3

1
1
0

 ,

−1

0
0
1




R(A) = span


1

1
2

 ,
2

3
5


N(AT ) = span


−1
−1

1


R(AT ) = span




1
0
3
1

 ,


0
1
−1

0




We can now verify directly that every vector in the basis for N(A) is orthogonal to every
vector in the basis for R(AT ), and similarly for N(AT ) and R(A).

Does the equation

Ax =

2
1
3


have a solution? We can use the ideas above to answer this question easily. We are really

asking whether

2
1
3

 is contained in R(A). But, according to the orthogonality relations, this

69



III Orthogonality

is the same as asking whether

2
1
3

 is contained in N(AT )⊥. This is easy to check. Simply

compute the dot product 2
1
3

 ·
−1
−1

1

 = −2− 1 + 3 = 0.

Since the result is zero, we conclude that a solution exists.

III.1.4 Projections

Let start with the formula for the projection of a vector x onto a line containing the non-zero
vector a.

The length of the projected vector p is

‖p‖ = ‖x‖ cos(θ) =
‖a‖‖x‖ cos(θ)

‖a‖
=

a · x
‖a‖

=
aTx
‖a‖

To get the vector p start with the unit vector a/‖a‖ and stretch it by an amount ‖p‖. This
gives

p = ‖p‖ a
‖a‖

=
1
‖a‖2

aaTx

This can be written p = Px where P is the projection matrix

P =
1
‖a‖2

aaT .

The matrix P satisfies two properties:

(1) P 2 = P

and
(2) P T = P.

Property (1) says that any vector in the range of P is not changed by P , since P (Px) =
P 2x = Px.

70



III.1 Orthogonality and Projections

Property (2) implies that N(P ) = R(P )⊥. This follows from the orthogonality relation
N(P ) = R(P T )⊥ since P = P T .

Any matrix satisfying (1) and (2) is called an orthogonal projection. (Warning: this is a
different concept than that of an orthogonal matrix which we will see later.)

Example: What is the projection of x =

1
1
1

 in the direction of a =

 1
2
−1

? Let’s calculate

the projection matrix P and compute Px. We can also verify that P 2 = P and P T = P .

>x = [1 1 1]’;
>a = [1 2 -1]’;
>P = (a’*a)^(-1)*a*a’

P =

0.16667 0.33333 -0.16667
0.33333 0.66667 -0.33333
-0.16667 -0.33333 0.16667

>P*x

ans =

0.33333
0.66667
-0.33333

>P*P

ans =

0.16667 0.33333 -0.16667
0.33333 0.66667 -0.33333
-0.16667 -0.33333 0.16667

The projection of x on to the plane orthogonal to a is given by q = x− p.

Thus we can write
q = x− Px = (I − P )x = Qx

where
Q = I − P

71



III Orthogonality

The matrix Q is also an orthogonal projection, since

Q2 = (I − P )(I − P ) = I − 2P + P 2 = I − P = Q

and
QT = IT − P T = I − P = Q.

Continuing with the example above, if we want to compute the projection matrix onto the
plane perpendicular to a we compute Q = I − P . Then Qx is the projection of x onto the
plane. We can also check that Q2 = Q.

> Q = eye(3) - P

Q =

0.83333 -0.33333 0.16667
-0.33333 0.33333 0.33333
0.16667 0.33333 0.83333

>Q*x

ans =

0.66667
0.33333
1.33333

>Q^2

ans =

0.83333 -0.33333 0.16667

72



III.1 Orthogonality and Projections

-0.33333 0.33333 0.33333
0.16667 0.33333 0.83333

III.1.5 Least squares solutions

Suppose that b 6∈ R(A) so that Ax = b does not have a solution. What vector x is closest
to being a solution?

We want to determine x so that Ax is as close as possible to b. From the picture, we can
see that this will happen when Ax−b is orthogonal to R(A). But the vectors orthogonal to
R(A) are exactly the vectors in N(AT ). Thus the vector we are looking for will satisfy the
equation

ATAx = ATb

This is the least squares equation, and a solution to this equation is called a least squares
solution.

(Aside: We can also use Calculus to derive the least squares equation. We want to minimize
‖Ax− b‖2. Computing the gradient and setting it to zero results in the same equations.)

It turns out that the least squares equation always has a solution. Another way of saying
this is R(AT ) = R(ATA). Instead of checking this, we can verify that the orthogonal com-
plements N(A) and N(ATA) are the same. But this is something we showed before, when
we considered the incidence matrix D for a graph.

If x solves the least squares equation, the vector Ax is the projection of b onto the range
R(A). If ATA is invertible (this happens when N(A) = N(ATA) = {0}), we can obtain a
formula for the projection. Starting with the least squares equation we multiply by (ATA)−1

to obtain
x = (ATA)−1ATb

so that
Ax = A(ATA)−1ATb.

Thus the projection matrix is given by

P = A(ATA)−1AT

73



III Orthogonality

It is worthwhile pointing out that if we say that the solution of the least squares equation
gives the “best” approximation to a solution, what we really mean is that it minimizes the
distance, or equivalently, its square

‖Ax− b‖2 =
∑

((Ax)i − bi)2.

There are other ways of measuring how far Ax is from b, for example the so-called L1 norm

‖Ax− b‖1 =
∑
|(Ax)i − bi|

Minimizing the L1 norm will result in a different “best” solution, that may be preferable
under some circumstances. However, it is much more difficult to find!

III.1.6 Straight line fit

Suppose we have some data points (x1, y1), (x2, y2), . . . , (xn, yn) and we want to fit a straight
line y = ax + b through them. This is similar to the interpolation problems we considered
before, but now there is no solution, unless, of course, the points actually do happen to all
lie on a single line.

The equations we want to solve are

ax1 + b = y1

ax2 + b = y2

...
axn + b = yn

The unknowns are a and b. The matrix form of the equation is
x1 1
x2 1
...
xn 1


[
a
b

]
=


y1

y2
...
yn


These equations will not have a solution (unless the points really do happen to lie on the
same line.) To find the least squares solution, we compute

[
x1 x2 · · · xn
1 1 · · · 1

]
x1 1
x2 1
...
xn 1

 =
[∑

x2
i

∑
xi∑

xi n

]

74



III.1 Orthogonality and Projections

and [
x1 x2 · · · xn
1 1 · · · 1

]
y1

y2
...
yn

 =
[∑

xiyi∑
yi

]

This results in the least squares equations[∑
x2
i

∑
xi∑

xi n

] [
a
b

]
=
[∑

xiyi∑
yi

]
which are easily solved.

III.1.7 Football rankings

We can try to use least squares to rank football teams. To start with, suppose we have three
teams. We pretend each team has a value v1, v2 and v3 such that when two teams play, the
difference in scores is the difference in values. So, if the season’s games had the following
results

1 vs. 2 30 40
1 vs. 2 20 40
2 vs. 3 10 0
3 vs. 1 0 5
3 vs. 2 5 5

then the vi’s would satisfy the equations

v2 − v1 = 10
v2 − v1 = 20
v2 − v3 = 10
v1 − v3 = 5
v2 − v3 = 0

Of course, there is no solution to these equations. Nevertheless we can find the least squares
solution. The matrix form of the equations is

Dv = b

with

D =


−1 1 0
−1 1 0

0 1 −1
−1 0 1
0 1 −1

 b =


10
20
10
5
0



75



III Orthogonality

The least squares equation is
DTDv = DTv

or  3 −2 −1
−2 4 −2
−1 −2 3

v =

−35
40
−5


Before going on, notice that D is an incidence matrix. What is the graph? (Answer: the

nodes are the teams and they are joined by an edge with the arrow pointing from the losing
team to the winning team. This graph may have more than one edge joining to nodes, if
two teams play more than once. This is sometimes called a multi-graph.). We saw that in
this situation N(D) is not empty, but contains vectors whose entries are all the same. The
situation is the same as for resistances, it is only differences in vi’s that have a meaning.

We can solve this equation in MATLAB/Octave. The straightforward way is to compute

>L = [3 -2 -1;-2 4 -2;-1 -2 3];
>b = [-35; 40; -5];
>rref([L b])

ans =

1.00000 0.00000 -1.00000 -7.50000
0.00000 1.00000 -1.00000 6.25000
0.00000 0.00000 0.00000 0.00000

As expected, the solution is not unique. The general solution, depending on the parameter
s is

v = s

1
1
1

+

−7.5
6.25

0


We can choose s so that the vi for one of the teams is zero. This is like grounding a node

in a circuit. So, by choosing s = 7.5, s = −6.25 and s = 0 we obtain the solutions

 0
13.75
7.5

,−13.75
0

−6.25

 or

−7.5
6.25

0

.

Actually, it is easier to compute a solution with one of the vi’s equal to zero directly. If

v =

 0
v2
v3

 then v2 =
[
v2
v3

]
satisfies the equation L2v2 = b2 where the matrix L2 is the bottom

right 2× 2 block of L and b2 are the last two entries of b.

76



III.1 Orthogonality and Projections

>L2 = L(2:3,2:3);
>b2 = b(2:3);
>L2\b2

ans =
13.7500
7.5000

We can try this on real data. The football scores for the 2007 CFL season can be found at
http://www.cfl.ca/index.php?module=sked&func=view&year=2007. The differences in
scores for the first 20 games are in cfl.m. The order of the teams is BC, Calgary, Edmonton,
Hamilton, Montreal, Saskatchewan, Toronto, Winnipeg. Repeating the computation above
for this data we find the ranking to be (running the file cfl.m)

v =

0.00000
-12.85980
-17.71983
-22.01884
-11.37097
-1.21812
0.87588

-20.36966

Not very impressive, if you consider that the second-lowest ranked team (Winnipeg) ended
up in the Grey Cup game!

Summary: Math Concepts

• dot product, norm and orthogonal vectors

• Cauchy–Schwarz inequality

• orthogonal subspaces

• orthogonal complement

• orthogonality of N(A), R(AT ) and N(AT ), R(A)

• projection onto a line, onto a (hyper)plane orthogonal to a line

• least squares solution

• projection onto the range of a matrix A with N(A) = {0}
• straight line fit using least squares

• ranking using least squares

77



III Orthogonality

Summary: MATLAB/Octave Concepts

• Computing inner (dot) products, vector norms, inverse trig functions.

• Computing projections

• Least squares calculations.

78



III.2 Orthonormal bases, Orthogonal Matrices, Gram–Schmidt and QR decomposition

III.2 Orthonormal bases, Orthogonal Matrices, Gram–Schmidt
and QR decomposition

III.2.1 Orthonormal bases

A basis q1,q2, . . . is called orthonormal if

1. ‖qi‖ = 1 for every i (normal)

2. qi · qj = 0 for i 6= j (ortho).

The standard basis for Rn given by

e1 =


1
0
0
...

 , e2 =


0
1
0
...

 , e3 =


0
0
1
...

 , · · ·

is an orthonormal basis for Rn. Another orthonormal basis for R2 is

q1 =
1√
2

[
1
1

]
, q1 =

1√
2

[
−1

1

]

If you expand a vector in an orthonormal basis, it’s very easy to find the coefficients in the
expansion. Suppose

v = c1q1 + c2q2 + · · ·+ cnqn

for some orthonormal basis q1,q2, . . .. Then, if we take the dot product of both sides with
qk, we get

qk · v = c1qk · q1 + c2qk · q2 + · · ·+ ckqk · qk · · ·+ cnqk · qn
= 0 + 0 + · · ·+ ck + · · ·+ 0
= ck

This gives a convenient formula for each ck. For example, in the expansion[
1
2

]
= c1

1√
2

[
1
1

]
+ c2

1√
2

[
−1

1

]
we have

c1 =
1√
2

[
1
1

]
·
[
1
2

]
=

3√
2

c2 =
1√
2

[
−1

1

]
·
[
1
2

]
=

1√
2

79



III Orthogonality

III.2.2 Orthogonal matrices

An n × n matrix Q is called orthogonal if QTQ = I (equivalently if QT = Q−1). If the
columns of Q are q1,q2, . . . ,qn then Q is orthogonal if

QTQ =


qT1
qT2
...

qTn

 [q1 q2 · · · qn
]

=


q1 · q1 q1 · q2 · · · q1 · qn
q2 · q1 q2 · q2 · · · q2 · qn

...
...

...
...

qn · q1 qn · q2 · · · qn · qn

 =


1 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1

 .
This is the same as saying that the columns of Q form an orthonormal basis.

Recall that for square matrices a left inverse is automatically also a right inverse. So if
QTQ = I then QQT = I too. This means that QT is an orthogonal matrix whenever Q
is. This proves the (non-obvious) fact that if the columns of an square matrix form an
orthonormal basis, then so do the rows!

If you multiply together two orthogonal matrices Q1 and Q2, then the product Q1Q2 is
also orthogonal. This follows from the fact that (Q1Q2)T = QT2Q

T
1 so that

(Q1Q2)TQ1Q2 = QT2Q
T
1Q1Q2 = QT2 IQ2 = I

Another way of recognizing orthogonal matrices is by their action on vectors. Suppose Q
is orthogonal. Then

‖Qv‖2 = (Qv) · (Qv) = v · (QTQv) = v · v = ‖v‖2

This implies that ‖Qv‖ = ‖v‖. In other words, orthogonal matrices don’t change the lengths
of vectors.

The converse is also true. If a matrix Q doesn’t change the lengths of vectors then it must
be orthogonal. To see this, suppose that ‖Qv‖ = ‖v‖ for every v. Then the calculation
above shows that v · (QTQv) = v · v for every v. Applying this to v + w we find

(v + w) ·
(
QTQ(v + w)

)
= (v + w) · (v + w)

Expanding, this gives

v · (QTQv) + w · (QTQw) + v · (QTQw) + w · (QTQv) = v · v + w ·w + v ·w + w · v

Since v · (QTQv) = v · v and w · (QTQw) = w · w we can cancel these terms. Also
w · (QTQv) = ((QTQ)Tw) ·v = (QTQw) ·v = v · (QTQw). So on each side of the equation,
the two remaining terms are the same. Thus

v · (QTQw) = v ·w

This equation holds for every choice of vectors v and w. If v = ei and w = ej then the left
side is the i, jth matrix element Qi,j of Q while the right side is the ei · ej , which is i, jth
matrix element of the identity matrix. Thus QTQ = I and Q is orthogonal.

80



III.2 Orthonormal bases, Orthogonal Matrices, Gram–Schmidt and QR decomposition

III.2.3 Matrices with orthogonal columns

An orthogonal matrix Q is a square matrix whose columns form an orthonormal basis. We
can also think about matrices whose columns are orthonormal, but with too few columns to
form a basis. Such a matrix looks like

Q =

[
q1 q2 · · · qk

]

where the qi’s form an orthonormal set (that is, qi · qi = 1 for all i and qi · qj = 0 if i 6= j),
but k is less than the dimension n. For such a matrix QTQ and QQT are both well defined,
but they have different sizes. The matrix QTQ is the k × k identity matrix. This follows
from the same calculation we did for orthogonal matrices:

QTQ =


qT1
qT2
...

qTk


q1 q2 · · · qk

 =


q1 · q1 q1 · q2 · · · q1 · qk
q2 · q1 q2 · q2 · · · q2 · qk

...
...

...
...

qk · q1 qk · q2 · · · qk · qk


But if k < n then QQT cannot possibly be the n × n identity matrix. You can see this,

for example, from the fact that the k × n matrix QT must have a non-trivial null space. In
fact, QQT is a projection matrix that projects onto the vector space spanned by the columns
of Q. To see this recall that the general formula for this projection is P = Q(QTQ)−1QT .
When QTQ = I this reduces to P = QQT .

III.2.4 Gram–Schmidt procedure

The Gram–Schmidt procedure takes any collection of linearly independent vectors a1,a2, . . . ,ak
and produces an orthonormal set q1,q2, . . .qk. Each qj is a linear combination of a1,a2, . . . ,aj ,
so that for every j, the first j qi’s span the same subspace as the first j ai’s.

So let’s start with a collection a1,a2, . . . ,ak of linearly independent vectors.

Define q1 to be the unit vector in the direction of a1:

q1 =
1
‖a1‖

a1

To define q2 we start with a2. The component of a2 in the direction of q1 is the projection
(a2 · q1)q1. If we start with a2 and subtract this component we end up with the vector
a2 − (a2 · q1)q1. This vector is orthogonal to q1, which can be verified by computing its dot
product with q1 and checking that it is zero. We define q2 to be the unit vector in the same
direction.

q2 =
1

‖a2 − (a2 · q1)q1‖
(a2 − (a2 · q1)q1)

81



III Orthogonality

The remaining qi’s are defined using the same strategy. We start with aj and subtract its
components in the directions q1 to qj−1. Then we normalize to make the resulting vector
unit length. Thus

q3 =
1

‖a3 − (a3 · q2)q2 − (a3 · q1)q1‖
(a3 − (a3 · q2)q2 − (a3 · q1)q1)

and so on.

III.2.5 The QR factorization

The Gram–Schmidt procedure can be interpreted as a matrix factorization. If we solve the
equations above for ai we get

a1 = ‖a1‖q1

a2 = (a2 · q1)q1 + ‖a2 − (a2 · q1)q1‖q2

a3 = (a3 · q1)q1 + (a3 · q2)q2 + ‖a3 − (a3 · q2)q2 − (a3 · q1)q1‖q3

...

This can be written as a matrix equation:[
a1 a2 a3 · · · ak

]
=

[
q1 q2 q3 · · · qk

]

‖a1‖ q1 · a2 q1 · a3 · · · q1 · ak

0 ‖a2 − (a2 · q1)q1‖ q2 · a3 · · · q2 · ak
0 0 ‖a3 − (a3 · q2)q2 − (a3 · q1)q1‖ · · · q3 · ak
0 0 0 · · · q4 · ak
...

...
...

. . .
...


So any matrix A with linearly independent columns can be factored as

A = QR

where Q has orthonormal columns and the same dimensions as A, and R is an upper trian-
gular matrix with positive entries on the diagonal.

Here is an example. Let

a1 =

 1
0
−1

 a2 =

 1
−1
0

 A =

a1 a2

=

 1 1
0 −1
−1 0



82



III.2 Orthonormal bases, Orthogonal Matrices, Gram–Schmidt and QR decomposition

Then

‖a1‖ =
√

2

q1 =
1
‖a1‖

a1 =

 1/
√

2
0

−1/
√

2


q1 · a2 =

 1/
√

2
0

−1/
√

2

 ·
 1
−1
0

 = 1/
√

2

a2 − (q1 · a2)q1 =

 1
−1
0

−
 1/2

0
−1/2

 =

1/2
−1
1/2


‖a2 − (q1 · a2)q1‖ =

√
1/4 + 1 + 1/4 =

√
3/2

q2 =
√

2/3

1/2
−1
1/2

 =

 1/
√

6
−
√

2/3
1/
√

6


With this information we can perform the QR factorization using the formula above. 1 1

0 −1
−1 0

 =

 1/
√

2 1/
√

6
0 −

√
2/3

−1/
√

2 1/
√

6

[√2 1/
√

2
0

√
3/2

]

III.2.6 Using MATLAB/Octave for QR

MATLAB/Octave has a built in function for computing the QR factorization. If A is a
matrix, then [Q R] = qr(A,0) produces the factorization above . . . almost. Let’s try it
with the example above:

>A=[1 1; 0 -1; -1 0];
>[Q R] = qr(A,0)

Q =

-0.70711 0.40825
-0.00000 -0.81650
0.70711 0.40825

R =

-1.41421 -0.70711
0.00000 1.22474

83



III Orthogonality

This is almost the same factorization as we obtained, except that the diagonal elements of
R are not all positive. In fact, comparing this to the factorization we computed by hand,
the whole first row of R has been multiplied by −1. To compensate, the first column of Q
has also been multiplied by −1. In general, the command [Q R] = qr(A,0) will give the
factorization above, except that some of the columns of Q and the corresponding rows of R
have a sign change. Notice that if we start off with an orthonormal basis and flip the sign of
some of the vectors in that basis, the result is still an orthonormal basis. So the difference
between our factorization and MATLAB/Octave’s is not important.

Running the qr command without the second argument, that is [Q R] = qr(A), gives a
slightly different factorization if A is n×m with n ≥ m. In this factorization Q is a square
n × n orthogonal matrix whose first m columns are identical to the columns of Q in our
factorization. The matrix R is padded with rows of zeros at the bottom, so that the product
QR is the same as before.

Summary: Math Concepts

• Orthonormal bases

• Orthogonal matrices

• Gram–Schmidt procedure

• QR factorization

Summary: MATLAB/Octave Concepts

• Using [Q R]=qr(A,0) to find the QR factorization.

84



III.3 Complex inner product

III.3 Complex inner product

III.3.1 Complex numbers (review)

Complex numbers can be thought of as points on the (x, y) plane. The point
[
x
y

]
, thought

of as a complex number, is written x+ iy (or x+ jy if you are an electrical engineer).

If z = x+ iy then x is called the real part of z and y is called the imaginary part of z.

Complex numbers are added just as if they were vectors in two dimensions. If z = x+ iy
and w = s+ it, then

z + w = (x+ iy) + (s+ it) = (x+ s) + i(y + t)

To multiply two complex numbers, just remember that i2 = −1. So if z = x + iy and
w = s+ it, then

zw = (x+ iy)(s+ it) = xs+ i2yt+ iys+ ixt = (xs− yt) + i(xt+ ys)

The modulus of a complex number, denoted |z| is simply the length of the corresponding
vector in two dimensions. If z = x+ iy

|z| = |x+ iy| =
√
x2 + y2

An important property is
|zw| = |z||w|

The complex conjugate of a complex number z, denoted z̄, is the reflection of z across the
x axis. Thus x+ iy = x− iy. Thus complex conjugate is obtained by changing all the i’s to
−i’s. We have

zw = z̄w̄

and
zz̄ = |z|2

This last equality is useful for simplifying fractions of complex numbers by turning the
denominator into a real number, since

z

w
=

zw̄

|w|2

For example, to simplify (1 + i)/(1− i) we can write

1 + i

1− i
=

(1 + i)2

(1− i)(1 + i)
=

1− 1 + 2i
2

= i

85



III Orthogonality

A complex number z is real (i.e. the y part in x+ iy is zero) whenever z̄ = z. We also have
the following formulas for the real and imaginary part. If z = x+ iy then x = (z + z̄)/2 and
y = (z − z̄)/(2i)

We define the exponential, eit, of a purely imaginary number it to be the number

eit = cos(t) + i sin(t)

lying on the unit circle in the complex plane.

The complex exponential satisfies the familiar rule ei(s+t) = eiseit since by the addition
formulas for sine and cosine

ei(s+t) = cos(s+ t) + i sin(s+ t)
= cos(s) cos(t)− sin(s) sin(t) + i(sin(s) cos(t) + cos(s) sin(t))
= (cos(s) + i sin(s))(cos(t) + i sin(t))

= eiseit

The exponential of a number that has both a real and imaginary part is defined in the
natural way.

ea+ib = eaeib = ea(cos(b) + i sin(b))

The derivative of a complex exponential is given by the formula

d

dt
e(a+ib)t = (a+ ib)e(a+ib)t

while the anti-derivative, for (a+ ib) 6= 0 is∫
e(a+ib)tdt =

1
(a+ ib)

e(a+ib)t + C

If (a+ ib) = 0 then e(a+ib)t = e0 = 1 so in this case∫
e(a+ib)tdt =

∫
dt = t+ C

III.3.2 Complex inner product

If A = [ai,j ] is a matrix (or a vector) the complex conjugate is the matrix (or vector) obtained
by conjugating each entry. Thus

A = [ai,j ].

The product rule for complex conjugation extends to matrices and we have

AB = ĀB̄

86



III.3 Complex inner product

The complex inner product of two vectors w =


w1

w2
...
wn

 and z =


z1
z2
...
zn

 is defined by

〈z,w〉 = wT z =
n∑
i=1

wizi

With this definition the norm of z is always positive since

〈z, z〉 = ‖z‖2 =
n∑
i=1

|zi|2

For complex matrices and vectors we have to modify the rule for bringing a matrix to the
other side of an inner product.

〈z, Aw〉 = 〈AT z,w〉

This leads to the definition of the adjoint of a matrix

A∗ = A
T
.

(In physics you will also see the notation A†.) With this notation 〈z, Aw〉 = 〈A∗z,w〉.

The complex analogue of an orthogonal matrix is called a unitary matrix. A unitary matrix
U is a square matrix satisfying

U∗U = UU∗ = I.

Notice that a unitary matrix with real entries is an orthogonal matrix since in that case
U∗ = UT . The columns of a unitary matrix form an orthonormal basis (with respect to the
complex inner product.)

MATLAB/Octave deals seamlessly with complex matrices and vectors. Complex numbers
can be entered like this

>z= 1 + 2i

z = 1 + 2i

There is a slight danger here in that if i has be defined to be something else (e.g. i =16)
then z=i would set z to be 16. You could use z=1i to get the desired result, or use the
alternative syntax

>z= complex(0,1)

z = 0 + 1i

87



III Orthogonality

The functions real(z), imag(z), conj(z), abs(z) compute the real part, imaginary part,
conjugate and modulus of z.

The function exp(z) computes the complex exponential if z is complex.
If a matrix A has complex entries then A’ is not the transpose, but the adjoint (conjugate

transpose).

>z = [1; 1i]

z =

1 + 0i
0 + 1i

z’

ans =

1 - 0i 0 - 1i

Thus the square of the norm of a complex vector is given by

>z’*z

ans = 2

This gives the same answer as

>norm(z)^2

ans = 2.0000

Summary: Math Concepts

• Complex numbers: addition, complex conjugate, modulus

• Complex exponential, addition formula, differentiation and integration

• Complex inner product: definition, norm of a complex vector

• Matrix adjoint, moving a matrix from one side of inner product to the other

• Unitary matrices

Summary: MATLAB/Octave Concepts

• Entering complex numbers

• real(z), imag(z), conj(z), abs(z)

• exp(z)

• A’ for complex matrices.

88



III.4 Fourier series

III.4 Fourier series

Fourier’s theorem states that any (sufficiently nice) function f(x) defined for x in the interval
[0, 1] can be expanded in a Fourier series:

f(x) =
a0

2
+
∞∑
n=1

(an cos(2πnx) + bn sin(2πnx))

We wish to understand this expansion from the point of view of linear algebra. In particular,
given f(x), how can we find the coefficients an and bn? It turns out that we can interpret
this expansion as an expansion of a vector in an orthonormal basis.

III.4.1 Complex form

To start we will rewrite this expansion in the complex exponential form

f(x) =
∞∑

n=−∞
cne

i2πnx.

The complex exponential form simplifies some of the computations.

Recall that
eit = cos(t) + i sin(t).

Therefore

cos(t) =
eit + e−it

2

sin(t) =
eit − e−it

2i
.

To obtain the complex exponential form of the Fourier series we simply substitute these
expressions into the original series. This gives

f(x) =
a0

2
+
∞∑
n=1

(
an
2
(
ei2πnx + e−i2πnx

)
+
bn
2i
(
ei2πnx − e−i2πnx

))

=
a0

2
+
∞∑
n=1

((
an
2

+
bn
2i

)
ei2πnx +

(
an
2
− bn

2i

)
e−i2πnx

)

=
∞∑

n=−∞
cne

i2πnx

89



III Orthogonality

where

c0 =
a0

2

cn =
an
2

+
bn
2i

for n > 0

cn =
a−n

2
− b−n

2i
for n < 0.

This complex form of the Fourier series is completely equivalent to the original series. Given
the an’s and bn’s we can compute the cn’s using the formula above, and conversely, given the
cn’s we can solve for

a0 = 2c0
an = cn + c−n for n > 0
bn = icn − ic−n for n > 0

III.4.2 Inner product for a space of functions

We will consider the space of complex valued functions f(x) on the interval [0, 1] that obey∫ 1

0
|f(x)|2dx <∞

This space is called L2([0, 1]) and is an example of a Hilbert space. If f and g are two
functions in this space, then we define the inner product to be

〈f, g〉 =
∫ 1

0
f(x)g(x)dx

Here f(x) denotes the complex conjugate of f .

III.4.3 An orthonormal basis

Now we will show that the complex exponential functions appearing in the Fourier expansion
are an orthonormal set. Let

en(x) = ei2πnx

for n = 0,±1,±2, . . .. We must compute 〈en, em〉. Since en(x) = e−i2πnx, we find

〈en, em〉 =
∫ 1

0
e−i2πnxei2πmxdx

=
∫ 1

0
ei2π(m−n)xdx

90



III.4 Fourier series

If n = m then ei2π(m−n)x = 1 so the integral equals 1. On the other hand if n 6= m then
ei2π(m−n)x has an anti-derivative ei2π(m−n)x/2π(m−n) that takes on the same value (namely
1/2π(m− n)) at both endpoints x = 0 and x = 1. Hence the integral is zero in this case.

Thus the functions {en(x)} form an orthonormal set. In fact, they are a basis for our space
of functions. The fact that they span the space, i.e., that every function can be written as
an infinite linear combination of the en’s, is more difficult to show. (For a start, it would
require a discussion of what it means for an infinite linear combination to converge!)

However, if you accept the fact that the en’s do indeed form an infinite basis, then it is
very easy to compute the coefficients. Starting with

f(x) =
∞∑

n=−∞
cnen(x)

we simply take the inner product of both sides with em. The only term in the infinite sum
that survives is the one with n = m. Thus

〈em, f〉 =
∞∑

n=−∞
cn〈em, en〉 = cm

and we obtain the formula

cm =
∫ 1

0
e−i2πmxf(x)dx

III.4.4 An example

Let’s compute the Fourier coefficients for the square wave function

f(x) =
{

1 if 0 ≤ x ≤ 1/2
−1 if 1/2 < x ≤ 1

If n = 0 then e−i2πnx = e0 = 1 so c0 is simply the integral of f .

c0 =
∫ 1

0
f(x)dx =

∫ 1/2

0
1dx−

∫ 1

1/2
1dx = 0

91



III Orthogonality

Otherwise, we have

cn =
∫ 1

0
e−i2πnxf(x)dx

=
∫ 1/2

0
e−i2πnxdx−

∫ 1

1/2
e−i2πnxdx

=
e−i2πnx

−i2πn

∣∣∣x=1/2

x=0
− e−i2πnx

−i2πn

∣∣∣x=1

x=1/2

=
2− 2eiπn

2πin

=
{

0 if n is even
2/iπn if n is odd

Thus we conclude that

f(x) =
∞∑

n=−∞
n odd

2
iπn

ei2πnx

To see how well this series is approximating f(x) we go back to the real form of the series.
Using an = cn + c−n and bn = icn− ic−n we find that an = 0 for all n, bn = 0 for n even and
bn = 4/πn for n odd. Thus

f(x) =
∞∑

n=1
n odd

4
πn

sin(2πnx) =
∞∑
n=0

4
π(2n+ 1)

sin(2π(2n+ 1)x)

We can use MATLAB/Octave to see how well this series is converging. The file ftdemo1.m
contains a function that take an integer N as an argument and plots the sum of the first
2N + 1 terms in the Fourier series above. Here is a listing:

function ftdemo1(N)

X=linspace(0,1,1000);
F=zeros(1,1000);

for n=[0:N]
F = F + 4*sin(2*pi*(2*n+1)*X)/(pi*(2*n+1));

end

plot(X,F)

end

Here are the outputs for N = 0, 1, 2, 10, 50:

92



III.4 Fourier series

93



III Orthogonality

III.4.5 Parseval’s formula

If v1, v2, . . . , vn is an orthonormal basis in a finite dimensional vector space and the vector
v has the expansion

v = c1v1 + · · ·+ cnvn =
n∑
i=1

civi

then, taking the inner product of v with itself, and using the fact that the basis is orthonor-
mal, we obtain

〈v,v〉 =
n∑
i=1

n∑
j=1

cicj〈vi,vj〉 =
n∑
i=1

|ci|2

The same formula is true in Hilbert space. If

f(x) =
∞∑

n=−∞
cnen(x)

Then ∫ 1

0
|f(x)|2dx = 〈f, f〉 =

∞∑
n=−∞

|cn|2

In the example above, we have 〈f, f〉 =
∫ 1
0 1dx = 1 so we obtain

1 =
n=∞∑
n=−∞
n odd

4
π2n2

= 2
n=∞∑
n=0

n odd

4
π2n2

=
8
π2

∞∑
n=0

1
(2n+ 1)2

94



III.4 Fourier series

or
∞∑
n=0

1
(2n+ 1)2

=
π2

8

Summary: Math Concepts

• Fourier series: real and complex form

• Inner product for functions

• Interpretation of Fourier series as expansion in orthonormal basis

• Computation of Fourier series coefficients

• Parseval’s formula

Summary: MATLAB/Octave Concepts

• Plotting partial sums of Fourier series

95



III Orthogonality

III.5 The Discrete Fourier Transform

III.5.1 Definition

Suppose that we don’t know the function f everywhere on the interval, but just at N discrete
points 0, 1/N, 2/N, . . . , (N − 1)/N . Define fj = f(j/N). Then we can write down an ap-
proximation for the Fourier coefficient ck by using the Riemann sum in place of the integral.
The resulting formula is the definition of the discrete Fourier transform.

ck =
1
N

N−1∑
j=0

e−i2πkj/Nfj

The first thing to notice about this definition is that although the formula makes sense for
all k, the ck’s start repeating themselves after a while. In fact ck+N = ck for all k. This
follows from the fact that e−i2πj = 1 which implies that

e−i2π(k+N)j/N = e−i2πkj/Ne−i2πj = e−i2πkj/N ,

so the formulas for ck and ck+N are the same. So we only need to compute c0, . . . , cN−1.

Next, notice that the transformation that sends the vector [f0, . . . , fN−1] to the vector
[c0, . . . , cN−1] is a linear transformation, given by multiplication by the matrix F = [Fk,j ]
with Fk,j = 1

N e
−i2πkj/N . If we define ωN = e−i2π/N then the matrix has the form

F =
1
N


1 1 1 · · · 1
1 ωN ω2

N · · · ωN−1
N

1 ω2
N ω4

N · · · ω
2(N−1)
N

...
...

...
...

1 ωN−1
N ω

2(N−1)
N · · · ω

(N−1)(N−1)
N



The inverse of F is given by

F−1 =


1 1 1 · · · 1
1 ωN ωN

2 · · · ωN
N−1

1 ωN
2 ωN

4 · · · ωN
2(N−1)

...
...

...
...

1 ωN
N−1 ωN

2(N−1) · · · ωN
(N−1)(N−1)


where ωN is the complex conjugate of ωN given by

ωN = ei2π/N =
1
ωN

.

96



III.5 The Discrete Fourier Transform

To see that this is the inverse, notice that ωNN = e−i2π = 1 so that ωNkN = 1 as well,
for any integer k. The points ωNk for k = 0, 1, 2, . . . , N − 1 are equally spaced points on the
unit circle in the complex plane, repeated periodically. So when k is not an integer multiple
of N the ωkN 6= 1

Now recall the formula for the sum of a geometric series:

(1 + z + z2 + · · ·+ zN−1) =
1− zN

1− z
.

When z = ωkN the numerator vanishes, and as long as k is not a multiple of N , the denom-
inator doesn’t, so the sum is zero. On the other hand, when k is a multiple of N so that
z = ωkN = 1 then the geometric sum adds up to N .

If you multiply the matrices above, each term in the product has the form of a geometric
sum (try it!) and the formula shows that the result is the identity matrix.

Notice that F̃ =
√
NF is a unitary matrix (F̃−1 = F̃ ∗). Recall that unitary matrices

preserve the length of complex vectors. This implies that the lengths of the vectors f =
[f0, f1, . . . , fN−1] and c = [c0, c1, . . . , cN−1] are related by

‖c‖2 =
1
N
‖f‖2

or
N−1∑
k=0

|ck|2 =
1
N

N−1∑
k=0

|fk|2

This is the discrete version of Parseval’s formula.

III.5.2 The Fast Fourier transform

Multiplying an N×N matrix with a vector of length N normally requires N2 multiplications,
since each entry of the product requires N , and there are N entries. In turns out that the
discrete Fourier transform, that is, multiplication by the matrix F , can be carried out using
only N log2(N) multiplications (at least if N is a power of 2). The algorithm that achieves
this is called the Fast Fourier Transform, or FFT. This represents a tremendous saving in
time: calculations that would require weeks of computer time can be carried out in seconds.

The basic idea of the FFT is to break the sum defining the Fourier coefficients ck into a
sum of the even terms and a sum of the odd terms. Each of these turns out to be (up to
a factor we can compute) a discrete Fourier transform of half the length. This idea is then
applied recursively. Starting with N = 2n and halving the size of the Fourier transform at
each step, it takes n = log2(N) steps to arrive at Fourier transforms of length 1. This is
where the log2(N) comes in.

97



III Orthogonality

To simplify the notation, we will ignore the factor of 1/N in the definition of the discrete
Fourier transform (so one should divide by N at the end of the calculation.) We now also
assume that

N = 2n

so that we can divide N by 2 repeatedly. The basic formula, splitting the sum for ck into a
sum over odd and even j’s is

Nck =
N−1∑
j=0

e−i2πkj/Nfj

=
N−1∑
j=0

j even

e−i2πkj/Nfj +
N−1∑
j=0

j odd

e−i2πkj/Nfj

=
N/2−1∑
j=0

e−i2πk2j/Nf2j +
N/2−1∑
j=0

e−i2πk(2j+1)/Nf2j+1

=
N/2−1∑
j=0

e−i2πkj/(N/2)f2j + e−i2πk/N
N/2−1∑
j=0

e−i2πkj/(N/2)f2j+1

Notice that the two sums on the right are discrete Fourier transforms of length N/2.

To continue, it is useful to write the integers j in base 2. Lets assume that N = 23 = 8.
Once you understand this case, the general case N = 2n will be easy. Recall that

0 = 000 (base 2)
1 = 001 (base 2)
2 = 010 (base 2)
3 = 011 (base 2)
4 = 100 (base 2)
5 = 101 (base 2)
6 = 110 (base 2)
7 = 111 (base 2)

The even j’s are the ones whose binary expansions have the form ∗ ∗ 0, while the odd j’s
have binary expansions of the form ∗ ∗ 1.

For any pattern of bits like ∗ ∗ 0, I will use the notation F<pattern> to denote the discrete
Fourier transform1 where the input data is given by all the fj ’s whose j’s have binary ex-
pansion fitting the pattern. Here are some examples. To start, F ∗∗∗k = Nck is the original
discrete Fourier transform, since every j fits the pattern ∗ ∗ ∗. In this example k ranges over
0, . . . , 7, that is, the values start repeating after that.

1Up to the factor of the number of points in the transform.

98



III.5 The Discrete Fourier Transform

Only even j’s fit the pattern ∗ ∗ 0, so F ∗∗0 is the discrete Fourier transform of the even j’s
given by

F ∗∗0k =
N/2−1∑
j=0

e−i2πkj/(N/2)f2j .

Here k runs from 0 to 3 before the values start repeating. Similarly, F ∗00 is a transform of
length N/4 = 2 given by

F ∗00
k =

N/4−1∑
j=0

e−i2πkj/(N/4)f4j .

In this case k = 0, 1 and then the values repeat. Finally, the only j matching the pattern
010 is j = 2, so F 010

k is a transform of length one term given by

F 010
k = e−i2πk·2/(N/8)f2 = f2.

Here we used that N/8 = 1 so that e−i2πk·2/(N/8) = e−i2πk·2 = 1.

With this notation, the basic even–odd formula can be written

F ∗∗∗k = F ∗∗0k + ωkNF
∗∗1
k .

Recall that ωN = e−i2π/N .

Lets look at this equation when k = 0. We will represent the formula by the following
diagram.

99



III Orthogonality

This diagram means that F ∗∗∗0 is obtained by adding F ∗∗00 to ω0
NF
∗∗1
0 . (Of course ω0

N = 1
so we could omit it.) Now lets add the diagrams for k = 1, 2, 3.

100



III.5 The Discrete Fourier Transform

Now when we get to k = 4, we recall that F ∗∗0 and F ∗∗1 are discrete transforms of length
N/2 = 4. Therefore, by periodicity F ∗∗04 = F ∗∗00 , F ∗∗05 = F ∗∗01 , and so on. So in the formula
F ∗∗∗4 = F ∗∗04 + ω4

NF
∗∗1
4 we may replace F ∗∗04 and F ∗∗14 with F ∗∗00 and F ∗∗10 respectively.

Making such replacements, we complete the first part of the diagram as follows.

101



III Orthogonality

To move to the next level we analyze the discrete Fourier transforms on the left of this
diagram in the same way. This time we use the basic formula for the transform of length
N/2, namely

F ∗∗0k = F ∗00
k + ωkN/2F

∗10
k

and
F ∗∗1k = F ∗01

k + ωkN/2F
∗11
k .

The resulting diagram shows how to go from the length two transforms to the final transform
on the right.

102



III.5 The Discrete Fourier Transform

Now we go down one more level. Each transform of length two can be constructed from
transforms of length one, i.e., from the original data in some order. We complete the diagram
as follows. Here we have inserted the value N = 8.

0

1

2

3

4

5

6

7

***F

***F

1

2

***F

***F

***F

***F

4

5

6

7

***F 0

F **0

**1
F

ω

F **0

**1
F

ω

F **0

**1
F

1

2

3

1

2

3

1

2

ω

ω

ω

ω

4

5

6

7

F **0
0

**1
0

F

ω
0

***F
ω 33

F

F

F

F

F

F

F
0

0
F

0

0

1

0

ω

ω

ω

ω

ω

ω

ω

ω

0

1

1

2

0

ω

ω

ω

ω

ω

ω

ω

ω

0

3

1

2

3

F

F

F

F

F

F

1

1

F
0

0
F

*

*

*

*

*

*

00

10

10

*01

11*

00

0

1

0

1

01

11

111

011

101

001

110

010

100

000

0

0

0

0

2

2

2

2

0

1

2

2

2

0

2

1

4

4

4

4

4

4

4

4 8

8

8

8

8

8

8

8

f

f

f

f

f

f

f

f
0

4

2

5

6

1

3

7
=

=

=

=

=

=

=

= = 8c

= 8c

= 8c

= 8c

= 8c

= 8c

= 8c

= 8c

Notice that the fj ’s on the left of the diagram are in bit reversed order. In other words,
if we reverse the order of the bits in the binary expansion of the j’s, the resulting numbers
are ordered from 0 (000) to 7 (111).

Now we can describe the algorithm for the fast Fourier transform. Starting with the original
data [f0, . . . , f7] we arrange the values in bit reversed order. Then we combine them pairwise,
as indicated by the left side of the diagram, to form the transforms of length 2. To do this we
we need to compute ω2 = e−iπ = −1. Next we combine the transforms of length 2 according
to the middle part of the diagram to form the transforms of length 4. Here we use that
ω4 = e−iπ/2 = −i. Finally we combine the transforms of length 4 to obtain the transform of
length 8. Here we need ω8 = e−iπ/4 = 2−1/2 − i2−1/2.

The algorithm for values of N other than 8 is entirely analogous. For N = 2 or 4 we stop
at the first or second stage. For larger values of N = 2n we simply add more stages. How
many multiplications do we need to do? Well there are N = 2n multiplications per stage of
the algorithm (one for each circle on the diagram), and there are n = log2(N) stages. So the
number of multiplications is 2nn = N log2(N)

As an example let us compute the discrete Fourier transform with N = 4 of the data
[f0, f1, f2, f3] = [1, 2, 3, 4]. First we compute the bit reversed order of 0 = (00), 1 = (01), 2 =
(10), 3 = (11) to be (00) = 0, (10) = 2, (01) = 1, (11) = 3. We then do the rest of the
computation right on the diagram as follows.

103



III Orthogonality

0

1

2

3f

f

f

f
0

=

=

=

=

3

2

1

1

3

2

4

1

1

−1

−1

1

1−3=−2

1+3=4

2+4=6

2−4=−2

4+6=10

4−6=−2

−2+2i

−2−2i

−i

i

−1

= 4c

= 4c

= 4c

= 4c

Summary: Math Concepts

• Discrete Fourier Transform definition

• Discrete version of Parseval’s formula

• Fast Fourier Transform

Summary: MATLAB/Octave Concepts

104


