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II Bases and Dimensions

II.1 Basis and dimension

II.1.1 Linear dependence and independence

A linear combination of vectors v1, . . . ,vk is a vector of the form

k∑
i=1

civi = c1v1 + c2v2 + · · ·+ ckvk

for some choice of numbers c1, c2, . . . , ck.

The vectors v1, . . . ,vk are called linearly dependent if there exist numbers c1, c2, . . . , ck
that are not all zero, such that the linear combination

∑k
i=1 civi = 0

On the other hand, the vectors are called linearly independent if the only linear combination
of the vectors equalling zero has every ci = 0. In other words

k∑
i=1

civi = 0 implies c1 = c2 = · · · = ck = 0

For example, the vectors

1
1
1

,

1
0
1

 and

7
1
7

 are linearly dependent because

1

1
1
1

+ 6

1
0
1

− 1

7
1
7

 =

0
0
0


If v1, . . . ,vk are linearly independent, then at least one of the vi’s can be written as a

linear combination of the others. To see this suppose that

c1v1 + c2v2 + · · ·+ ckvk = 0

with not all of the ci’s zero. Then we can solve for any of the vi’s whose coefficient ci is not
zero. For instance, if c1 is not zero we can write

v1 = −(c2/c1)v2 − (c3/c1)v3 − · · · − (ck/c1)vk

This means any linear combination we can make with the vectors v1, . . . ,vk can be achieved
without using v1, since we can simply replace the occurrence of v1 with the expression on
the right.

Sometimes it helps to have a geometrical picture. In three dimensional space R3, three
vectors are linearly dependent if they lie in the same plane.
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II.1 Basis and dimension

The columns of the matrix

1 ∗ ∗
0 2 ∗
0 0 3

 are linearly independent. Here ∗ denotes an arbitrary

entry. To see this suppose that

c1

1
0
0

+ c2

∗2
0

+ c3

∗∗
3

 =

0
0
0


Then, equating the bottom entries we find 3c3 = 0 so c3 = 0. But once we know c3 = 0 then
the equation reads

c1

1
0
0

+ c2

∗2
0

 =

0
0
0


which implies that c2 = 0 too, and similarly c1 = 0

Similarly, for a matrix in echelon form (even if, as in the example below, it is not completely
reduced), the pivot columns are linearly independent. For example the first, second and fifth
columns in the matrix 1 1 1 1 0

0 1 2 5 5
0 0 0 0 1


are independent. For a matrix in reduced row echelon form, like1 0 1 1 0

0 1 2 5 0
0 0 0 0 1


the pivot columns are standard basis vectors (see below), which are obviously independent.

These examples motivate the following matrix formulation. Given vectors v1, . . . ,vk, put
them in the columns of a matrix A so that

A =
[
[c|c|c|c]v1 v2 · · · vk

]
.

If we put the coefficients c1, c2, . . . , ck into a vector

c =


c1
c2
...
ck


then

Ac = c1v1 + c2v2 + · · ·+ ckvk

is the linear combination of the columns v1, . . . ,vk with coefficients ci.
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II Bases and Dimensions

The vectors are linearly dependent if there is a non-zero solution c to the homogeneous
equation

Ac = 0

On the other hand, if the only solution to the homogeneous equation is c = 0 then the
columns v1, . . . ,vk are linearly independent.

To compute whether a given collection of vectors is dependent or independent we can
place them in the columns of a matrix A and reduce to echelon form. If the echelon form
has only pivot columns, then there are no non-zero solutions to Ac = 0 and the vectors are
independent. On the other hand, if the echelon form has some non-pivot columns, then the
equation Ac = 0 has some non-zero solutions and so the vectors are dependent.

Let’s try this with the vectors in the example above in MATLAB/Octave.

>V1=[1 1 1]’;
>V2=[1 0 1]’;
>V3=[7 1 7]’;
>A=[V1 V2 V3]

A =

1 1 7
1 0 1
1 1 7

>rref(A)

ans =

1 0 1
0 1 6
0 0 0

Since the third column is a non-pivot column, the vectors are linearly dependent.

II.1.2 Subspaces

A collections of vectors V is called a subspace if linear combinations of vectors from V stay
inside V . In other words, if v1 and v2 lie in V then so does c1v1 + c2v2.

In three dimensional space, examples of subspaces are lines and planes through the origin.
If we add or scalar multiply two vectors lying on the same line (or plane) the resulting vector
remains on the same line (or plane). Additional subspaces are the trivial subspace, containing
the single vector 0, as well as the whole space itself.
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II.1 Basis and dimension

Here is another example of a subspace. The set of n × n matrices can be thought of as
an n2 dimensional vector space. Within this vector space, the set of symmetric matrices
(satisfying AT = A) is a subspace. To see this, suppose A1 and A2 are symmetric. Then,
using the linearity property of the transpose, we see that

(c1A1 + c2A2)T = c1A
T
1 + c2A

T
2 = c1A1 + c2A2

which shows that c1A1 + c2A2 is symmetric too.

Given a collection of vectors v1, . . . ,vk we may form a subspace of all possible linear
combinations. This is a subspace is called span(v1, . . . ,vk) or the space spanned by the
vi’s. It is a subspace because if we start with any two elements of span(v1, . . . ,vk), say
c1v1 + c2v2 + · · · + ckvk and d1v1 + d2v2 + · · · + dkvk then a linear combination of these
linear combinations is again a linear combination since

s1(c1v1 + c2v2 + · · ·+ ckvk) + s2(d1v1 + d2v2 + · · ·+ dkvk) =
(s1c1 + s2d1)v1 + (s1c2 + s2d2)v2 + · · ·+ (s1ck + s2dk)vk

For example the span of the three vectors

1
0
0

,

0
1
0

 and

0
0
1

 is the whole three dimensional

space, because every vector is a linear combination of these. The span of the four vectors1
0
0

,

0
1
0

,

0
0
1

 and

1
1
1

 is the same.

II.1.3 Nullspace N(A) and Range R(A)

There are two important subspaces associated to any matrix. Let A be an n×m matrix. If
x is m dimensional, then Ax makes sense and is a vector in n dimensional space.

The first subspace associated to A is the nullspace (or kernel) of A denoted N(A) (or
Ker(A)). It is defined as all vectors x solving the homogeneous equation for A, that is

N(A) = {x : Ax = 0}

This is a subspace because if Ax1 = 0 and Ax2 = 0 then

A(c1x1 + c2x2) = c1Ax1 + c2Ax2 = 0 + 0 = 0.

The nullspace is a subspace of m dimensional space Rm.

The second subspace is the range (or column space) of A denoted R(A) (or C(A)). It is
defined as all vectors of the form Ax for some x. From our discussion above, we see that
R(A) is the set of all possible linear combination (or the span) of its columns. This explains
the name “column space”. The range is a subspace of n dimensional space Rn.
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II Bases and Dimensions

II.1.4 Basis

A collection of vectors v1, . . . ,vk contained in a subspace V is called a basis for that subspace
if

1. span(v1, . . . ,vk) = V , and

2. v1, . . . ,vk are linearly independent.

Condition (1) says that any vector in V can be written as a linear combination of v1, . . . ,vk.
Condition (2) says that there is exactly one way of doing this. Here is the argument. Suppose
there are two ways of writing the same vector v ∈ V as a linear combination:

v = c1v1 + c2v2 + · · ·+ ckvk

v = d1v1 + d2v2 + · · ·+ dkvk

Then by subtracting these equations, we obtain

0 = (c1 − d1)v1 + (c2 − d2)v2 + · · ·+ (ck − dk)vk

Linear independence now says that every coefficient in this sum must be zero. This implies
c1 = d1, c2 = d2 . . . ck = dk.

Example: Rn has the standard basis e1, e2, . . . , en where

e1 =


1
0

...

 e1 =


0
1

...

 · · ·

Another basis for R2 is
[
1
1

]
,
[

1
−1

]
. To see this, notice that saying that any vector y can

be written in a unique way as c1

[
1
1

]
+ c2

[
1
−1

]
is the same as saying that the equation

[
1 1
1 −1

] [
c1
c2

]
= x

always has a unique solution. This is true.

It is intuitively clear that, say, a plane in three dimensions will always have a basis of two
vectors. Here is an argument that shows that any two bases for a subspace V will always have
the same number of elements. Let v1, . . . ,vn and w1, . . . ,wm be two bases for a subspace
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II.1 Basis and dimension

V . Let’s try to show that n must be the same as m. Since the vi’s span V we can write each
wi as a linear combination of vi’s. We write

wj =
n∑

i=1

ai,jvi

for each j = 1, . . . ,m. Let’s put all the coefficients into an n×m matrix A = [ai,j ].

Now suppose that m > n. Then A has more columns than rows. So its echelon form must
have some non-pivot columns which implies that there must be some non-zero solution to
Ac = 0. Let c 6= 0 be such a solution. The equation Ac = 0 can be written out as the
system of equations

m∑
j=1

ai,jcj = 0

for i = 1, . . . , n. Now we compute

m∑
j=1

cjwj =
m∑

j=1

cj

(
n∑

i=1

ai,jvi

)

=
m∑

j=1

n∑
i=1

cjai,jvi

=
n∑

i=1

m∑
j=1

ai,jcjvi

=
n∑

i=1

 m∑
j=1

ai,jcj

vi

= 0

Since the cj ’s are not all zeros this contradicts the linear independence of the wj ’ s and is
therefore impossible. So it can’t be true that m > n. We can eliminate the possibility that
n > m in the same way by exchanging the roles of vi and wj in the argument. The only
remaining possibility is that n = m.

The dimension of a subspace V is defined to be the number of elements in any basis for V .

II.1.5 Finding basis and dimension of N(A)

Example: Let

A =

1 3 3 10
2 6 −1 −1
1 3 1 4

 .
To calculate a basis for the nullspace N(A) and determine its dimension we need to find the
solutions to Ax = 0. To do this we first reduce A to reduced row echelon form U and solve
Ux = 0 instead, since this has the same solutions as the original equation.
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II Bases and Dimensions

>A=[1 3 3 10;2 6 -1 -1;1 3 1 4];
>rref(A)

ans =

1 3 0 1
0 0 1 3
0 0 0 0

This means that x =


x1

x2

x3

x4

 is in N(A) if

1 3 0 1
0 0 1 3
0 0 0 0



x1

x2

x3

x4

 =

0
0
0


We now divide the variables into basic variables, corresponding to pivot columns, and free
variables, corresponding to non-pivot columns. In this example the basic variables are x1

and x3 while the free variables are x2 and x4. The free variables are the parameters in the
solution. We can solve for the basic variables in terms of the free ones, giving x3 = −3x4

and x1 = −3x2 − x4. This leads to
x1

x2

x3

x4

 =


−3x2 − x4

x2

−3x4

x4

 = x2


−3
1
0
0

+ x4


−1
0
−3
1



The vectors


−3
1
0
0

 and


−1
0
−3
1

 span the nullspace since every element of N(A) is a linear

combination of them. They are also linearly independent because if the linear combination
on the right of the equation above is zero, then by looking at the second entry of the vec-
tor (corresponding to the first free variable) we find x2 = 0 and looking at the last entry
(corresponding to the second free variable) we find x4 = 0. So both coefficients must be zero.

To find a basis for N(A) in general we first compute U = rref(A) and determine which
variables are basic and which are free. For each free variable we form a vector as follows.
First put a 1 in the position corresponding to that free variable and a zero in every other
free variable position. Then fill in the rest of the vector in such a way that Ux = 0. (This
is easy to do!) The set all such vectors - one for each free variable - is a basis for N(A).
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II.1 Basis and dimension

II.1.6 The matrix version of Gaussian elimination

How are a matrix A and its reduced row echelon form U = rref(A) related? If A and U are
n×m matrices, then there exists an invertible n× n matrix such that

A = EU E−1A = U

This immediately explains why the N(A) = N(U), because if Ax = 0 then Ux = E−1Ax = 0
and conversely if Ax = 0 then Ux = EAx = 0.

What is this matrix E? It can be thought of as a matrix record of the Gaussian elimination
steps taken to reduce A to U . It turns out performing an elementary row operation is the
same as multiplying on the left by an invertible square matrix. This invertible square matrix,
called an elementary matrix, is obtained by doing the row operation in question to the identity
matrix.

Suppose we start with the matrix

>A=[1 3 3 10;2 6 -1 -1;1 3 1 4]

A =

1 3 3 10
2 6 -1 -1
1 3 1 4

The first elementary row operation that we want to do is to subtract twice the first row
from the second row. Let do this to the 3 × 3 identity matrix I (obtained with eye(3) in
MATLAB/Octave) and call the result E1

>E1 = eye(3)

E1 =

1 0 0
0 1 0
0 0 1

>E1(2,:) = E1(2,:)-2*E1(1,:)

E1 =

1 0 0
-2 1 0
0 0 1
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II Bases and Dimensions

Now if we multiply E1 and A we obtain

>E1*A

ans =

1 3 3 10
0 0 -7 -21
1 3 1 4

which is the result of doing that elementary row operation to A. Let’s do one more step.
The second row operation we want to do is to subtract the first row from the third. Thus
we define

>E2 = eye(3)

E2 =

1 0 0
0 1 0
0 0 1

>E2(3,:) = E2(3,:)-E2(1,:)

E2 =

1 0 0
0 1 0
-1 0 1

and we find

>E2*E1*A

ans =

1 3 3 10
0 0 -7 -21
0 0 -2 -6
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II.1 Basis and dimension

which is one step further along in the Gaussian elimination process. Continuing in this way
until we eventually arrive at U so that

EkEk−1 · · ·E2E1A = U

Thus A = EU with E = E−1
1 E−1

2 · · ·E
−1
k−1E

−1
k . For the example above it turns out that

E =

1 3 −6
2 −1 −18
1 1 −9


which we can check:

>A=[1 3 3 10;2 6 -1 -1;1 3 1 4]

A =

1 3 3 10
2 6 -1 -1
1 3 1 4

>U=rref(A)

U =

1 3 0 1
0 0 1 3
0 0 0 0

>E=[1 3 -6; 2 -1 -18; 1 1 -9];
>E*U

ans =

1 3 3 10
2 6 -1 -1
1 3 1 4

If we do a partial elimination then at each step we can write A = E′U ′ where U ′ is the
resulting matrix at the point we stopped, and E′ is obtained from the Gaussian elimination
step up to that point. A common place to stop is when U ′ is in echelon form, but the entries
above the pivots have not been set to zero. If we can achieve this without doing any row
swaps along the way then E′ turns out to be lower triangular matrix. Since U ′ is upper
triangular, this is called the LU decomposition of A.

47



II Bases and Dimensions

II.1.7 A basis for R(A)

The ranges or column spaces R(A) and R(U) are not the same in general, but they are
related. In fact, the vectors in R(A) are exactly all the vectors in R(U) multiplied by E,
where E is the invertible matrix in the equation A = EU . We can write this relationship as

R(A) = ER(U)

To see this notice that if x ∈ R(U), that is, x = Uy for some y then Ex = EUy = Ay is in
R(A). Conversely if x ∈ R(A), that is, x = Ay for some y then x = EE−1Ay = EUy so x
is E times a vector in R(U).

Now if we can find a basis u1,u2, . . . ,uk for R(U) the vectors Eu1, Eu2, . . . , Euk form a
basis for R(A). (Homework exercise)

But a basis for the column space R(U) is easy to find. They are exactly the pivot columns
of U . If we multiply these by E we get a basis for R(A). But if

A =

[
a1

∣∣∣∣∣a2

∣∣∣∣∣ · · ·
∣∣∣∣∣am

]
, U =

[
u1

∣∣∣∣∣u2

∣∣∣∣∣ · · ·
∣∣∣∣∣um

]

then the equation A = EU can be written[
a1

∣∣∣∣∣a2

∣∣∣∣∣ · · ·
∣∣∣∣∣am

]
=

[
Eu1

∣∣∣∣∣Eu2

∣∣∣∣∣ · · ·
∣∣∣∣∣Eum

]

From this we see that the columns of A that correspond to pivot columns of U form a basis
for R(A). This implies that the dimension of R(A) is the number of pivot columns in U .

II.1.8 The rank of a matrix

We define the rank of the matrix A, denoted r(A) to be the number of pivot columns of U .
Then we have shown that for an n×m matrix A

dim(R(A)) = r(A)
dim(N(A)) = m− r(A)

II.1.9 Bases for R(AT ) and N(AT )

Of course we could find R(AT ) and N(AT ) by computing the reduced row echelon form for
AT and following the steps above. But then we would miss an important relation between
the dimensions of these spaces.
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II.1 Basis and dimension

Let’s start with the column space R(AT ). The columns of AT are the rows of A (written
as column vectors instead of row vectors). So R(AT ) is the row space of A.

It turns out that R(AT ) and R(UT ) are the same. This follows from A = EU . To see this
take the transpose of this equation. Then AT = UTET . Now suppose that x ∈ R(AT ). This
means that x = ATy for some y. But then x = UTETy = UTy′ where y′ = ETy so x ∈
R(UT ). Similarly, if x = UTy for some y then x = UTET (ET )−1y = AT (ET )−1y = ATy′

for y′ = (ET )−1y. So every vector in R(UT ) is also in R(AT ). Here we used that E and
hence ET is invertible.

Now we know that R(AT ) = R(UT ) is spanned by the columns of UT . But since UT is
in reduced row echelon form, its non-zero columns are independent. Therefore, the non-zero
columns of UT form a basis for R(AT ). There is one of these for every pivot. This leads to

dim(R(AT )) = r(A) = dim(R(A))

The final subspace to consider is N(AT ). From our work above we know that

dim(N(AT )) = n− dim(R(AT )) = n− r(A).

Finding a basis is tricker. It might be easiest to find the reduced row echelon form of AT .
But if we insist on using A = EU or AT = UTET we could proceed by multiplying on the
right be the inverse of ET . This gives

AT (ET )−1 = UT

Now notice that the last n− r(A) columns of UT are zero, since U is in reduced row echelon
form. So the last n− r(A) columns of (ET )−1 are in the the nullspace of AT . They also have
to be independent, since (ET )−1 is invertible.

Thus the last n− r(A) of (ET )−1 form a basis for N(AT ).

From a practical point of view, this is not so useful since we have to compute the inverse
of a matrix. It might be just as easy to reduce AT . (Actually, things are slightly better if
we use the LU decomposition. The same argument shows that the last n− r(A) columns of
(LT )−1 also form a basis for N(AT ). But LT is an upper triangular matrix, so its inverse is
faster to compute.)

Summary: Math Concepts

• Linear dependence and independence: understand the definition

• Be able to decide if a collection of vectors are dependent

• Subspaces: what does it mean for a collection of vectors to form a subspace?

• Be able to decide if a collection of vectors is a subspace

• Basis: definition, check if a collection of vectors is a basis.
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II Bases and Dimensions

• Matrix form of Gaussian elimination, A = EU

• The four subspaces N(A), R(A), N(AT ) R(AT ) and how to compute bases for each
one.

• The rank of the matrix and the formulas for the dimension of each of the four subspaces.

Summary: MATLAB/Octave Concepts

• eye(n) gives an n× n identity matrix.
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II.2 Graphs and Networks

II.2 Graphs and Networks

II.2.1 Directed graphs and their incidence matrix

A directed graph is a collection of vertices (or nodes) connected by edges with arrows. Here
is a graph with 4 vertices and 5 edges.

Graphs come up in many applications. For example, the nodes could represent computers
and the arrows internet connections. Or the nodes could be factories and the arrows represent
movement of goods. We will mostly focus on a single interpretation where the edges represent
resistors or batteries hooked up in a circuit.

The incidence matrix of a graph is an n×m matrix, where n is the number of edges and m
is the number of vertices. We label the rows by the edges in the graph and the columns by
the vertices. Each row of the matrix corresponds to an edge in the graph. It has a −1 in the
place corresponding to the vertex where the arrow starts and a 1 in the place corresponding
to the vertex where the arrow ends.

Here is the incidence matrix for the illustrated graph.

1 2 3 4

©1
©2
©3
©4
©5


−1 1 0 0

0 −1 1 0
0 0 −1 1
0 −1 0 1
1 0 0 −1



The columns of the matrix have the following interpretation. The column representing
a given vertex has a +1 for each arrow coming in to that vertex and a −1 for each arrow
leaving the vertex.
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II Bases and Dimensions

Given an incidence matrix, the corresponding graph can easily be drawn. What is the
graph for −1 1 0

0 −1 1
1 0 −1

?

(Answer: a triangular loop.)

II.2.2 Nullspace and range of incidence matrix and its transpose

We now wish to give an interpretation of the fundamental subspaces associated with the
incidence matrix of a graph. Let’s call the matrix D. In our example D acts on vectors

v ∈ R4 and produces a vector Dv in R5. We can think of the vector v =


v1
v2
v3
v4

 as an

assignment of a voltage to each of the nodes in the graph. Then the vector Dv =


v2 − v1
v3 − v2
v4 − v3
v4 − v2
v1 − v4


assigns to each edge the voltage difference across that edge. The matrix D is similar to the
derivative matrix when we studied finite difference approximations. It can be thought of as
the derivative matrix for a graph.

II.2.3 The null space N(D):

This is the set of voltages v for which the voltage differences in Dv are all zero. This means
that any two nodes connected by an edge will have the same voltage. In our example, this

implies all the voltages are the same, so every vector in N(D) is of the form v = s


1
1
1
1

 for

some s. In other words, the null space is one dimensional with basis




1
1
1
1


.

For a graph that has several disconnected pieces, Dv = 0 will force v to be constant on
each connected component of the graph. Each connected component will contribute one basis
vector to N(D). This is the vector that is equal to 1 on that component and zero everywhere
else. Thus dim(N(D)) will be equal to the number of disconnected pieces in the graph.
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II.2 Graphs and Networks

II.2.4 The range R(D):

The range of D consists of all vectors b in R5 that are voltage differences, i.e., b = Dv for
some v. We know that the dimension of R(D) is 4− dim(N(D)) = 4− 1 = 3. So the set of
voltage difference vectors must be restricted in some way. In fact a voltage difference vector
will have the property that the sum of the differences around a closed loop is zero. In the

example the edges ©1 ,©4 ,©5 form a loop, so if b =


b1
b2
b3
b4
b5

 is a voltage difference vector then

b1 + b4 + b5 = 0 We can check this directly in the example. Since b = Dv =


v2 − v1
v3 − v2
v4 − v3
v4 − v2
v1 − v4


we check that (v2 − v1) + (v4 − v2) + (v1 − v4) = 0. In the example graph there are three
loops, namely ©1 ,©4 ,©5 and ©2 ,©3 ,©4 and ©1 ,©2 ,©3 ,©5 . The corresponding equations that
the components of a vector b must satisfy to be in the range of D are

b1 + b4 + b5 = 0
b2 + b3 − b4 = 0

b1 + b2 + b3 + b5 = 0

Notice the minus sign in the second equation corresponding to a backwards arrow. However
these equations are not all independent, since the third is obtained by adding the first two.
There are two independent equations that the components of b must satisfy. Since R(D) is
3 dimensional, there can be no additional constraints.

Now we wish to find interpretations for the null space and the range of DT . Let y =


y1

y2

y3

y4

y5


be a vector in R5 which we interpret as being an assignment of a current to each edge in

the graph. Then DTy =


y5 − y1

y1 − y2 − y4

y2 − y3

y3 + y4 − y5

. This vector assigns to each node the amount of

current collecting at that node.

II.2.5 The null space N(DT ):

This is the set of current vectors y ∈ R5 which do not result in any current building up
(or draining away) at any of the nodes. We know that the dimension of this space must be
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5 − dim(R(DT )) = 5 − dim(R(D)) = 5 − 3 = 2. We can guess at a basis for this space by
noting that current running around a loop will not build up at any of the nodes. The loop

vector


1
0
0
1
1

 represents a current running around the loop ©1 ,©4 ,©5. We can verify that this

vector lies in the null space of DT :


−1 0 0 0 1
1 −1 0 −1 0
0 1 −1 0 0
0 0 1 1 −1




1
0
0
1
1

 =


0
0
0
0



The current vectors corresponding to the other two loops are


0
1
1
−1
0

 and


1
1
1
0
1

. However

these three vectors are not linearly independent. Any choice of two of these vectors are
independent, and form a basis.

II.2.6 The range R(DT ):

This is the set of vectors in R4 of the form


x1

x2

x3

x4

 = DTy. With our interpretation these are

vectors which measure how the currents in y are building up or draining away from each
node. Since the current that is building up at one node must have come from some other
nodes, it must be that

x1 + x2 + x3 + x4 = 0

In our example, this can be checked directly. This one condition in R4 results in a three
dimensional subspace.

II.2.7 Summary and Orthogonality relations

The two subspaces R(D) and N(DT ) are subspaces of R5.. The subspace N(DT ) contains all
linear combination of loop vectors, while R(D) contains vectors whose dot product with loop
vectors is zero. This means every vector in R(D) is orthogonal to every vector in N(DT ).
We write this as R(D) ⊥ N(DT ).
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The two subspaces N(D) and R(DT ) are subspaces of R4. The subspace N(D) contains
constant vectors, while R(DT ) contains vectors orthogonal to constant vectors. So again
N(D) ⊥ R(DT ).

It turns out that these orthogonality relations between the subspaces are valid for any
matrix.

II.2.8 Resistors and the Laplacian

Now we suppose that each edge of our graph represents a resistor. This means that we
associate with the ith edge a resistance Ri. Sometimes it is convenient to use conductances
γi which are defined to be the reciprocals of the resistances, that is, γi = 1/Ri.

If we begin by an assignment of voltage to every node, and put these numbers in a vector
v ∈ R4. Then Dv ∈ R5 represents the vector of voltage differences for each of the edges.

Given the resistance Ri for each edge, we can now invoke Ohm’s law to compute the current
flowing through each edge. For each edge, Ohm’s law states that

Vi = IiRi,

where V is the voltage drop across the edge, Ii is the current flowing through that edge and
Ri is the resistance. Solving for the current we obtain

Ii = R−1
i Vi.

Notice that the voltage drop Vi in this formula is exactly the ith component of the vector
Dv. So if we collect all the currents in a vector I then Ohm’s law for all the edges can be
written as

I = R−1Dv
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where

R =


R1 0 0 0 0
0 R2 0 0 0
0 0 R3 0 0
0 0 0 R4 0
0 0 0 0 R5


is the diagonal matrix with the resistances on the diagonal.

Finally, if we multiply I by the matrix DT the resulting vector

DT I = DTR−1Dv

has one entry for each node representing the total current building up or draining away at
each node.

The matrix
L = DTR−1D

appearing in this formula is called the Laplacian. It is similar to the second derivative matrix
that appeared when we studied finite difference approximations. Let’s determine its entries.

To start we consider the case where all the resistances have the same value 1 so that
R = R−1 = I. In this case L = DTD. Let’s start with the example graph above. Then

L =


−1 0 0 0 1

1 −1 0 −1 0
0 1 −1 0 0
0 0 1 1 −1



−1 1 0 0

0 −1 1 0
0 0 −1 1
0 −1 0 1
1 0 0 −1

 =


2 −1 0 −1
−1 3 −1 −1

0 −1 2 −1
−1 −1 −1 3


Notice that the ith diagonal entry is the total number of edges connected to the ith node.
The i, j entry is −1 if the ith node is connected to the jth node, and 0 otherwise.

This pattern describes the Laplacian L for any graph. To see this, write

D = [d1|d2|d3| · · · |dm]

Then the i, j entry of DTD is dT
i dj . Recall that di has an entry of −1 for every edge leaving

the ith node, and a 1 for every edge coming in. So dT
i di, the diagonal entries of DTD, are

the sum of (±1)2, with one term for each edge connected to the ith node. This sum gives
the the total number of edges connected to the ith node. To see this in the example graph,
let’s consider the first node. This node has two edges connected to it and

d1 =


−1
0
0
0
1


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Thus the 1, 1 entry of the Laplacian is

dT
1 d1 = (−1)2 + 12 = 2

On the other hand, if i 6= j then the vectors di and dj have a non-zero entry in the same
position only if one of the edges leaving the ith node is coming in to the jth node or vice
versa. For a graph with at most one edge connecting any two nodes (we usually assume this)
this means that dT

i dj will equal −1 if the ith and jth nodes are connected by an edge, and
zero otherwise. For example, in the graph above the the first edge leaves the first node, so
that d1 has a −1 in the first position. This first edge comes in to the second node so d2

has a +1 in the first position. Otherwise, there is no overlap in these vectors, since no other
edges touch both these nodes. Thus

dT
1 d2 =

[
−1 0 0 0 1

]


1
−1

0
−1

0

 = −1

What happens if the resistances are not all equal to one? In this case we must replace
D with R−1D in the calculation above. This multiplies the kth row of D with γk = 1/Rk.
Making this change in the calculations above leads to the following prescription for calculating
the entries of L. The diagonal entries are given by

Li,i =
∑

k

γk

Where the sum goes over all edges touching the ith node. When i 6= j then

Li,j =

{
−γk if nodes i and j are connected with edge k

0 if nodes i and j are not connected

II.2.9 Kirchhoff’s law and the null space of L

Kirchhoff’s law states that currents cannot build up at any node. If v is the voltage vector
for a circuit, then we saw that Lv is the vector whose ith entry is the total current building
up at the ith node. Thus, for an isolated circuit that is not hooked up to any batteries,
Kirchhoff’s law can be written as

Lv = 0

By definition, the solutions are exactly the vectors in the nullspace N(L) of L. It turns out
that N(L) is the same as N(D), which contains all constant voltage vectors. This is what
we should expect. If there are no batteries connected to the circuit the voltage will be the
same everywhere and no current will flow.
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To see N(L) = N(D) we start with a vector v ∈ N(D). Then Dv = 0 implies Lv =
DTR−1Dv = DTR−10 = 0. This show that v ∈ N(L) too, that is, N(D) ⊆ N(L)

To show the opposite inclusion we first note that the matrix R−1 can be factored into a
product of invertible matrices R−1 = R−1/2R−1/2 where R−1/2 is the diagonal matrix with
diagonal entries 1/

√
Ri. This is possible because each Ri is a positive number. Also, since

R−1/2 is a diagonal matrix it is equal to its transpose, that is, R−1/2 = (R−1/2)T

Now suppose that Lv = 0. This can be written DT (R−1/2)TR−1/2Dv = 0. Now we
multiply on the left with vT . This gives

vTDT (R−1/2)TR−1/2Dv = (R−1/2Dv)TR−1/2Dv = 0

But for any vector w, the number wTw is the dot product of w with itself which is equal to
the length of w squared. Thus the equation above can be written

‖R−1/2Dv‖2 = 0

This implies that R−1/2Dv = 0. Finally, since R−1/2 is invertible, this yields Dv = 0. We
have shown that any vector in N(L) also is contained in N(D). Thus N(L) ⊆ N(D) and
together with the previous inclusion this yields N(L) = N(D).

II.2.10 Connecting a battery

To see more interesting behaviour in a circuit, we pick two nodes and connect them to a
battery. For example, let’s take our example circuit above and connect the nodes 1 and 2.

The terminals of a battery are kept at a fixed voltage. Thus the voltages v1 and v2 are
now known say,

v1 = b1

v2 = b2
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Of course, it is only voltage differences that have physical meaning, so we could set b1 = 0.
Then b2 would be the voltage of the battery.

At the first and second nodes there now will be current flowing in and out from the battery.
Let’s call these currents I1 and I2. At all the other nodes the total current flowing in and
out is still zero, as before.

How are the equations for the circuit modified? For simplicity let’s set all the resistances
Ri = 1. The new equations are

2 −1 0 −1
−1 3 −1 −1

0 −1 2 −1
−1 −1 −1 3



b1
b2
v3
v4

 =


I1
I2
0
0


Two of the voltages v1 and v2 have changed their role in these equations from being unknowns
to being knowns. On the other hand, the first two currents, which were originally known
quantities (namely zero) are now unknowns.

To solve this system of equations we write it in block matrix form[
A BT

B C

] [
b
v

]
=
[
I
0

]
where

A =
[

2 −1
−1 3

]
B =

[
0 −1
−1 −1

]
C =

[
2 −1
−1 3

]
and

b =
[
b1
b2

]
v =

[
v3
v4

]
I =

[
I1
I2

]
0 =

[
0
0

]
Our system of equations can then be written as two 2× 2 systems.

Ab +BTv = I

Bb + Cv = 0

We can solve the second equation for v. Since C is invertible

v = −C−1Bb

Using this value of v in the first equation yields

I = (A−BTC−1B)b

The matrix A−BTC−1B is the voltage-to-current map. In our example

A−BTC−1B = (8/5)
[

1 −1
−1 1

]
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In fact, for any circuit the voltage to current map is given by

A−BTC−1B = γ

[
1 −1
−1 1

]
Notice that this form of the matrix implies that I1 = I2 (the current flowing out the battery
at one end flows in on the other side) and that if b1 = b2 then the currents are zero. The
number

R =
1
γ

is the ratio of the applied voltage to the resulting current, is the effective resistance of the
network between the two nodes.

So in our example circuit, the effective resistance between nodes 1 and 2 is 5/8.

If the battery voltages are b1 = 0 and b2 = b then the voltages at the remaining nodes are[
v3
v4

]
= −C−1B

[
0
b

]
=
[
4/5
3/5

]
b

II.2.11 Two resistors in series

Let’s do a trivial example where we know the answer. If we connect two resistors in series,
the resistances add, and the effective resistance is R1 +R2. The graph for this example looks
like

The Laplacian for this circuit is

L =

 γ1 −γ1 0
−γ1 γ1 + γ2 −γ2

0 −γ2 γ2


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with γi = 1/Ri, as always. We want the effective resistance between nodes 1 and 3. Although
it is not strictly necessary, it is easier to see what the submatrices A, B and C are if we reorder
the vertices so that the ones we are connecting, namely 1 and 3, come first. This reshuffles
the rows and columns of L yielding

1 3 2

1
3
2

 γ1 0 −γ1

0 γ2 −γ2

−γ1 −γ2 γ1 + γ2


Here we have labelled the re-ordered rows and columns with the nodes they represent. Now
the desired submatrices are

A =
[
γ1 0
0 γ2

]
B =

[
−γ1 −γ2

]
C =

[
γ1 + γ2

]
and

A−BTC−1B =
[
γ1 0
0 γ2

]
− 1
γ1 + γ2

[
γ2

1 γ1γ2

γ1γ2 γ2
2

]
=

γ1γ2

γ1 + γ2

[
1 −1
−1 1

]
This gives an effective resistance of

R =
γ1 + γ2

γ1γ2
=

1
γ1

+
1
γ2

= R1 +R2

as expected.

II.2.12 Example: a resistor cube

Hook up resistors along the edges of a cube. If each resistor has resistance Ri = 1, what is
the effective resistance between opposite corners of the cube?

We will use MATLAB/Octave to solve this problem. To begin we define the Laplace
matrix L. Since each node has three edges connecting it, and all the resistances are 1, the
diagonal entries are all 3. The off-diagonal entries are −1 or 0, depending on whether the
corresponding nodes are connected or not.
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>L=[3 -1 0 -1 -1 0 0 0;-1 3 -1 0 0 -1 0 0;
0 -1 3 -1 0 0 -1 0;-1 0 -1 3 0 0 0 -1;
-1 0 0 0 3 -1 0 -1;0 -1 0 0 -1 3 -1 0;
0 0 -1 0 0 -1 3 -1;0 0 0 -1 -1 0 -1 3];

We want to find the effective resistance between 1 and 7. To compute the submatrices A, B
and C it is convenient to re-order the nodes so that 1 and 7 come first. In MATLAB/Octave,
this can be achieved with the following statement.

>L=L([1,7,2:6,8],[1,7,2:6,8]);

In this statement the entries in the first bracket [1,7,26,8]: indicates the new ordering of
the rows. Here 26: stands for 2,3,4,5,6. The second bracket indicates the re-ordering of
the columns, which is the same as for the rows in our case.

Now it is easy to extract the submatrices A, B and C and compute the voltage-to-current
map DN

>N = length(L);
>A = L(1:2,1:2);
>B = L(3:N,1:2);
>C = L(3:N,3:N);
>DN = A - B’*C^(-1)*B;

The effective resistance is the reciprocal of the first entry in DN. The command format rat
gives the answer in rational form. (Note: this is just a rational approximation to the floating
point answer, not an exact rational arithmetic as in Maple or Mathematica.)

>format rat
>R = 1/DN(1,1)

R = 5/6

Summary: Math Concepts

• The incidence matrix of a graph.

• Interpretations for each of the four subspaces in terms of voltage and current vectors.

• The dimensions of each subspace.

• The Laplace operator for a graph.

• The nullspace of L.

• Calculating the voltages and currents when a battery is attached.

• Calculating the effective resistance.
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Summary: MATLAB/Octave Concepts

• Re-ordering the rows and columns of a matrix

• Extracting submatrices

• Using format rat
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