
Mech 221 Math Formulae 2008

Trigonometry

θ

h
o

a

sin θ = o/h

cos θ = a/h

tan θ = o/a

tan x =
sin x

cos x
sin2 x + cos2 x = 1

sin(−x) = − sin x

cos(−x) = cos x

sin(x + y) = sin x cos y + cos x sin y

cos(x + y) = cos x cos y − sin x sin y

eix = cos x + i sin x

Quadratic Equation

ax2 + bx + c = 0

has roots

x =
−b±

√
b2 − 4ac

2a

Newton’s Method

If an initial guess x0 is close enough to a root of a function g, then the iteration
formula

xn+1 = xn −
g(xn)

g′(xn)

gives increasingly good estimates xn of the root.
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Elementary Derivatives

d
dx

xr = rxr−1 (r 6= 0)

d
dx

sin x = cos x

d
dx

cos x = − sin x

d
dx

tan x = sec2 x = 1/ cos2 x

d
dx

ex = ex

d
dx

ln |x| = 1/x

d
dx

sin−1 x = 1/
√

1− x2

d
dx

cos−1 x = −1/
√

1− x2

d
dx

tan−1 x = 1/(1 + x2)

Taylor Polynomials and Series

Taylor polynomial approximation:

f(x) ≈ Pn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

Residual formula

f(x)− Pn(x) =
f (n+1)(ξ)

(n + 1)!
(x− a)n+1

where ξ is a point between a and x (that is not known).
Basic Taylor (McLaurin) series:

sin x = x− x3

6
+

x5

5!
− x7

7!
+ · · ·

cos x = 1− x2

2
+

x4

4!
− x6

6!
+ · · ·

ex = 1 + x +
x2

2
+

x3

6
+

x4

4!
+ · · ·

1

1− x
= 1 + x + x2 + x3 + · · · for |x| < 1

Numerical Integration

Approximations to

I =
∫ b

a
f(x)dx

starting from a division of [a, b] into N sub-intervals of equal length h = (b− a)/N :

Trapezoidal Rule:

I ≈ TN =
h

2
f(a) + hf(a + h) + hf(a + 2h) + · · ·+ hf(b− h) +

h

2
f(b)
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with error expression

I − TN = −f ′′(ξ)

12
(b− a)h2

Simpson’s Rule: (N must be even)

I ≈ SN =
h

3
f(a) +

4h

3
f(a + h) +

2h

3
f(a + 2h) +

4h

3
f(a + 3h) +

2h

3
f(a + 4h) +

· · ·+ 4h

3
f(b− h) +

h

3
f(b)

with error expression

I − SN = −f (4)(ξ)

180
(b− a)h4

In the error expressions above, ξ is a point between a and b (that is not known).

Numerical Differentiation

Forward: f ′(a) ≈ (f(a + h)− f(a))/h.

Backward: f ′(a) ≈ (f(a)− f(a− h))/h.

Centred: f ′(a) ≈ (f(a + h)− f(a− h))/(2h).

Centred second derivative: f ′′(a) ≈ (f(a + h)− 2f(a) + f(a− h))/h2.

Approximating Differential Equations

To find approximations yk to y(kh) where y(t) solves

dy

dt
= f(y, t)

and h is a small fixed step, the following methods can be used:

Forward Euler: yk+1 = yk + hf(yk, kh)

Backward Euler: yk+1 = yk + hf(yk+1, (k + 1)h)

Linear Interpolation

If f(a) and f(b) are known and c is in [a, b] then

f(c) ≈ b− c

b− a
f(a) +

c− a

b− a
f(b)
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Eigen-Analysis

Eigenvalues of a matrix A are scalar values λ that solve

det(A− λI) = 0.

If λ is an eigenvalue then x is called a corresponding eigenvector if x is nonzero and
solves

(A− λI)x = 0

(that is, Ax = λx).

Differential Equations

Scalar, linear, first order

y′ = a(t)y + f(t)

with initial data y(0) = yo. Let

A(t) =
∫ t

0
a(τ)dτ.

The solution is given by

y(t) = eA(t)yo + eA(t)
∫ t

0
e−A(τ)f(τ)dτ.

Scalar, linear, second-order constant coefficient

ay′′ + by′ + cy = f(t)

Solution is y(t) = yo(t) + yp(t) (homogeneous plus particular).

homogeneous: Solve auxiliary equation:

ar2 + br + c = 0.

Three cases:

1. Two distinct real roots r1 and r2:

yo(t) = Aer1t + Ber2t.

2. Repeated real root r:
yo(t) = Aert + Btert.
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3. Complex conjugate roots r = a± ib:

yo(t) = eat(A cos bt + B sin bt).

particular: If f(t) has one of the following forms, the Method of Undetermined
Coefficients can be used:

f(t) is a polynomial in t of order n: take yp(t) to also be a polynomial in t
of order n.

f(t) = sin ωt or f(t) = cos ωt: take

yp(t) = a sin ωt + b cos ωt.

f(t) = ebt: take
yp(t) = aebt.

special case (resonance): If any one of the terms in the form for the partic-
ular solution above is in the homogeneous solution, multiply the form of
yp(t) above by t until this is no longer true.

solving for the coefficients: Insert the form of yp(t) into the differential equation
to solve for the undetermined coefficients in yp(t). Then (and only then) find A
and B from the complete solution y = yo + yp using the initial (or boundary)
data.

Vector, first order, linear, homogeneous, constant coefficient (diagonaliz-
able)

y′ = Ay

with initial data y(0) = yo. Assume that A is a diagonalizable matrix,

A = EDE−1

where D is the diagonal matrix of eigenvalues λ1, λ2, . . . λn and E is the matrix with
the corresponding eigenvectors in columns. Then the solution is

y(t) = EME−1yo

where M is the diagonal matrix with entries eλ1t, eλ2t, . . . eλnt.
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Special case: Defective Matrix

In the case above when A is a diagonalizable matrix, the solution y is written as a
linear combination of terms

xie
λit

where λi are the eigenvalues of A and xi the corresponding eigenvectors. It can happen
for some matrices A (known as defective matrices) that for certain eigenvalues λ that
are repeated twice, there is only one eigenvector x. In this case, find the vector z (a
generalized eigenvector) that satisfies

(A− λI)z = x.

The solution of
y′ = Ay

contains linear combinations of

xeλt and (tx + z)eλt

in this case.
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