Mech 221 Math Formulae 2008

Trigonometry

$$
\sin \theta = o/h
$$

\n
$$
\cos \theta = a/h
$$

\n
$$
\tan \theta = o/a
$$

\n
$$
\tan x = \frac{\sin x}{\cos x}
$$

\n
$$
\sin^2 x + \cos^2 x = 1
$$

\n
$$
\sin(-x) = -\sin x
$$

\n
$$
\cos(-x) = \cos x
$$

\n
$$
\sin(x + y) = \sin x \cos y + \cos x \sin y
$$

\n
$$
\cos(x + y) = \cos x \cos y - \sin x \sin y
$$

\n
$$
e^{ix} = \cos x + i \sin x
$$

Quadratic Equation

$$
ax^2 + bx + c = 0
$$

has roots

$$
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
$$

Newton's Method

If an initial guess x_0 is close enough to a root of a function g, then the iteration formula

$$
x_{n+1} = x_n - \frac{g(x_n)}{g'(x_n)}
$$

gives increasingly good estimates \boldsymbol{x}_n of the root.

Elementary Derivatives

$$
\frac{d}{dx}x^r = rx^{r-1} \quad (r \neq 0)
$$
\n
$$
\frac{d}{dx}\sin x = \cos x
$$
\n
$$
\frac{d}{dx}\cos x = -\sin x
$$
\n
$$
\frac{d}{dx}\tan x = \sec^2 x = 1/\cos^2 x
$$
\n
$$
\frac{d}{dx}\tan^{-1} x = 1/\sqrt{1 - x^2}
$$
\n
$$
\frac{d}{dx}\tan^{-1} x = -1/\sqrt{1 - x^2}
$$
\n
$$
\frac{d}{dx}\tan^{-1} x = 1/(1 + x^2)
$$

Taylor Polynomials and Series

Taylor polynomial approximation:

$$
f(x) \approx P_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n
$$

Residual formula

$$
f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}
$$

where ξ is a point between a and x (that is not known).

Basic Taylor (McLaurin) series:

$$
\sin x = x - \frac{x^3}{6} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots
$$
\n
$$
\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots
$$
\n
$$
e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{4!} + \cdots
$$
\n
$$
\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots \quad \text{for } |x| < 1
$$

Numerical Integration

Approximations to

$$
I = \int_{a}^{b} f(x)dx
$$

starting from a division of $[a, b]$ into N sub-intervals of equal length $h = (b - a)/N$: Trapezoidal Rule:

$$
I \approx T_N = \frac{h}{2}f(a) + hf(a+h) + hf(a+2h) + \dots + hf(b-h) + \frac{h}{2}f(b)
$$

with error expression

$$
I - T_N = -\frac{f''(\xi)}{12}(b - a)h^2
$$

Simpson's Rule: $(N \text{ must be even})$

$$
I \approx S_N = \frac{h}{3}f(a) + \frac{4h}{3}f(a+h) + \frac{2h}{3}f(a+2h) + \frac{4h}{3}f(a+3h) + \frac{2h}{3}f(a+4h) + \cdots + \frac{4h}{3}f(b-h) + \frac{h}{3}f(b)
$$

with error expression

$$
I - S_N = -\frac{f^{(4)}(\xi)}{180}(b - a)h^4
$$

In the error expressions above, ξ is a point between a and b (that is not known).

Numerical Differentiation

Forward: $f'(a) \approx (f(a+h) - f(a))/h$. Backward: $f'(a) \approx (f(a) - f(a-h))/h$. Centred: $f'(a) \approx (f(a+h) - f(a-h))/(2h)$. Centred second derivative: $f''(a) \approx (f(a+h) - 2f(a) + f(a-h))/h^2$.

Approximating Differential Equations

To find approximations y_k to $y(kh)$ where $y(t)$ solves

$$
\frac{dy}{dt} = f(y, t)
$$

and h is a small fixed step, the following methods can be used:

Forward Euler: $y_{k+1} = y_k + hf(y_k, kh)$

Backward Euler: $y_{k+1} = y_k + h f(y_{k+1}, (k+1)h)$

Linear Interpolation

If $f(a)$ and $f(b)$ are known and c is in [a, b] then

$$
f(c) \approx \frac{b-c}{b-a} f(a) + \frac{c-a}{b-a} f(b)
$$

Eigen-Analysis

Eigenvalues of a matrix **A** are scalar values λ that solve

$$
\det(\mathbf{A} - \lambda \mathbf{I}) = 0.
$$

If λ is an eigenvalue then \underline{x} is called a corresponding eigenvector if \underline{x} is nonzero and solves

$$
(\mathbf{A} - \lambda \mathbf{I})\underline{x} = 0
$$

(that is, $\mathbf{A}\underline{x} = \lambda \underline{x}$).

Differential Equations

Scalar, linear, first order

$$
y' = a(t)y + f(t)
$$

with initial data $y(0) = y_o$. Let

$$
A(t) = \int_0^t a(\tau) d\tau.
$$

The solution is given by

$$
y(t) = e^{A(t)}y_o + e^{A(t)} \int_0^t e^{-A(\tau)} f(\tau) d\tau.
$$

Scalar, linear, second-order constant coefficient

$$
ay'' + by' + cy = f(t)
$$

Solution is $y(t) = y_o(t) + y_p(t)$ (homogeneous plus particular).

homogeneous: Solve auxiliary equation:

$$
ar^2 + br + c = 0.
$$

Three cases:

1. Two distinct real roots r_1 and r_2 :

$$
y_o(t) = Ae^{r_1t} + Be^{r_2t}.
$$

2. Repeated real root r:

$$
y_o(t) = Ae^{rt} + Bte^{rt}.
$$

3. Complex conjugate roots $r = a \pm ib$:

$$
y_o(t) = e^{at}(A\cos bt + B\sin bt).
$$

- **particular:** If $f(t)$ has one of the following forms, the Method of Undetermined Coefficients can be used:
	- $f(t)$ is a polynomial in t of order n: take $y_p(t)$ to also be a polynomial in t of order n.
	- $f(t) = \sin \omega t$ or $f(t) = \cos \omega t$: take

$$
y_p(t) = a\sin\omega t + b\cos\omega t.
$$

 $f(t) = e^{bt}$: take

$$
y_p(t) = ae^{bt}.
$$

- special case (resonance): If any one of the terms in the form for the particular solution above is in the homogeneous solution, multiply the form of $y_p(t)$ above by t until this is no longer true.
- solving for the coefficients: Insert the form of $y_p(t)$ into the differential equation to solve for the undetermined coefficients in $y_p(t)$. Then (and only then) find A and B from the complete solution $y = y_o + y_p$ using the initial (or boundary) data.

Vector, first order, linear, homogeneous, constant coefficient (diagonalizable)

$$
\underline{y}' = \mathbf{A}\underline{y}
$$

with initial data $y(0) = y_o$. Assume that **A** is a diagonalizable matrix,

$$
\mathbf{A}=\mathbf{E}\mathbf{D}\mathbf{E}^{-1}
$$

where **D** is the diagonal matrix of eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ and **E** is the matrix with the corresponding eigenvectors in columns. Then the solution is

$$
\underline{y}(t) = \mathbf{EME}^{-1} \underline{y_o}
$$

where **M** is the diagonal matrix with entries $e^{\lambda_1 t}, e^{\lambda_2 t}, \dots e^{\lambda_n t}$.

Special case: Defective Matrix

In the case above when A is a diagonalizable matrix, the solution y is written as a linear combination of terms

 $\underline{x}_i e^{\lambda_i}t$

where λ_i are the eigenvalues of ${\bf A}$ and \underline{x}_i the corresponding eigenvectors. It can happen for some matrices **A** (known as defective matrices) that for certain eigenvalues λ that are repeated twice, there is only one eigenvector \underline{x} . In this case, find the vector \underline{z} (a generalized eigenvector) that satisfies

$$
(\mathbf{A} - \lambda \mathbf{I})\underline{z} = \underline{x}.
$$

The solution of

$$
\underline{y}' = \mathbf{A}\underline{y}
$$

contains linear combinations of

$$
\underline{xe}^{\lambda}t
$$
 and $(t\underline{x}+\underline{z})e^{\lambda t}$

in this case.