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Differential Equation Basics
Terminology

Differential Equation for unknown function y(t):

dy

dt
= f (y , t)

• This is an Ordinary Differential Equation (ODE). Ordinary not
Partial. You will study PDEs later.

• This is a first order DE. The order is the maximum number of
derivatives in the equation.

• This is a scalar DE. If y were a vector and f a vector function,
then it would be a vector DE.

• An extra (initial) condition must be given, usually the value of
y at a given value of t.

• The DE and initial condition together make an Initial Value
Problem (IVP) that can be solved for y(t).
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Differential Equation Basics-II
Linear Equations have the Superposition Property

If the equation has the special form

y ′ + p(t)y = g(t)

then it is called a linear equation.
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Linear Constant Coefficient Equations
Linear Homogeneous Constant Coefficient Equations

y ′ + ay = 0

where a is constant. This is our old friend exponential growth and
decay. We can add an initial condition y(t0) = y0 to make it an
IVP.
Solution:
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Linear Constant Coefficient Equations-II
Linear Inhomogeneous Constant Coefficient Equations

y ′ + ay = g(t)

where g(t) is a given function of t.

• If y1(t) and y2(t) are two solutions of the equation, then
yc(t) = y1(t)− y2(t) will satisy the homogeneous equation
y ′ + ay = 0. We call yc(t) the complementary solution.

• Thus if we find any particular solution yp(t) then the general
solution will be of the form

y(t) = yc(t) + yp(t)

• Note that yc(t) contains a constant, which can be used to fit
initial conditions. This is only done after you have the two
pieces together in the form above.
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Linear Constant Coefficient Equations-III
Method of Undetermined Coefficients

y ′ + ay = g(t)

If g(t) has one of the following forms, the Method of
Undetermined Coefficients can be used to find the particular
solution:

g(t) is a polynomial in t of order n: take yp(t) to also be a
polynomial in t of order n.

g(t) = sin ωt or g(t) = cos ωt: take

yp(t) = a sin ωt + b cos ωt.

g(t) = ebt : take
yp(t) = aebt .
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Linear Constant Coefficient Equations-IV
Method of Undetermined Coefficients (cont.)

special case (resonance): If any one of the terms in the form for
the particular solution above is in the homogeneous
solution, multiply the form of yp(t) above by t until
this is no longer true.

solving for the coefficients: Insert the form of yp(t) into the
differential equation and match functions of t to get
a linear system for the undetermined coefficients in
yp(t). After the coefficients are determined, then
(and only then) find the complete solution
y = yo + yp using the initial data.
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Linear Constant Coefficient Equations-V
MUC Example 1

y ′ + y = t
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Linear Constant Coefficient Equations-VI
MUC Example 2

y ′ − 5y = et

with y(0) = 1
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Direction Fields

Most DEs can’t be solved analytically. We will look at numerical
methods to find approximate solutions. For scalar, first order
equations

y ′ = f (y , t)

the Direction Field can be plotted. This gives quick qualitative
information about the solutions.

1. Draw axes t against y .

2. Make a mesh of points: (ti , yj)

3. Draw a small line segment with slope f (ti , yj) at each mesh
point.

MATLAB software for direction fields can be found at
math.rice.edu/∼dfield.
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Direction Fields - II
y ′ = y 2 − t
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Direction Fields - III
y ′ = y 2 − t (cont.)

Following the directions in the Direction Field allows you to sketch
solution curves.
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Direction Fields - IV
y ′ = −3y + t
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Direction Fields - V
y ′ = −3y + t (cont.)
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Direction Fields - VI
Sketching Direction Fields

y ′ = f (t, y)

It is possible to sketch a direction field by hand.

1. Sketch the isocline(s), curves where f (t, y) = 0.

2. On each side of an isolcline, y(t) will either be increasing or
decreasing. Determine which for each region separated by
isoclines.

3. Sketch some approximate solution curves.

This technique could also help you match direction fields to
equations, a possible homework or test question.
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Integrating Factor Method
General First Order Linear Equation

Last lecture we saw how to solve constant coefficient first order
problems with certain specific forms of the RHS. But...

• What if the RHS is not of those specific forms?

• What if the coefficients are not constant?

• What if the equation is non-linear?

General First Order Linear Equation:

y ′ + p(t)y = g(t)
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Integrating Factor Method-II
Solution Formula

y ′ + p(t)y = g(t)

with initial data y(0) = y0. Let

P(t) =

∫ t

0
p(τ)dτ.

The solution is given by

y(t) = e−P(t)y0 + e−P(t)

∫ t

0
eP(τ)g(τ)dτ.

Note that this solution has the form y(t) = yc(t) + yp(t). This is
common to all linear DEs.

First, we’ll prove this formula, then we’ll do examples.
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Proof of Solution Formula
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Proof of Solution Formula-II
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Proof of Solution Formula-III
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Examples
Example 1 - y ′ − 5y = −e5t
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Examples-II
Example 1 - y ′ − 5y = −e5t using MUC
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Examples-III
Example 2 - y ′ + y sin t = cos tecos t

Looks complicated, let’s look at the directions fields first:
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Examples-IV
Example 2 - y ′ + y sin t = cos tecos t (cont.)
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Examples-V
Example 2 - y ′ + y sin t = cos tecos t (cont.)
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Examples-VI
Review of Solution Technique

1. Put the equation in the correct form

y ′ + p(t)y = g(t)

2. Integrate to find

µ(t) = e
R t p(s)ds

3. Multiply the equation by µ(t) to get

d

dt
(µ(t)y(t)) = µ(t)g(t)

4. Integrate to get

y(t) =
1

µ(t)

(∫ t

µ(s)g(s)ds + C

)
5. Fit the constant C using initial data.
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Examples-VII
Notes on Solution Technique

• There are two integrations that need to be done (steps 2 and
4). This means there is no guarantee of an analytic solution.

• Convince yourself that the constant of integration in step 2
does not change the solution.

• There is sometimes physical significance to the use of
µ(t)y(t) instead of y(t) to get a simpler equation.

• A unique solution is guaranteed to exist for t values around
the data point t0 up to places (if any) where p(t) or g(t)
have singularities.



Lecture 5 Lecture 6 Lecture 7

Outline

Lecture 5
Differential Equation Basics
Linear Constant Coefficient Equations
Direction Fields

Lecture 6
Integrating Factor Method
Proof of Solution Formula
Examples

Lecture 7
Equations with Discontinuous Forcing Functions
Separable Equations
More Examples



Lecture 5 Lecture 6 Lecture 7

Equations with Discontinuous Forcing Functions
Example 1

Solve the IVP:
y ′ + 2y = g(t)

where y(0) = a, given, and

g(t) =

{
1, 0 ≤ t ≤ 1
0, t > 1
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Equations with Discontinuous Forcing Functions-II
Example 1 (cont.)
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Equations with Discontinuous Forcing Functions-III
Example 1 (cont.)



Lecture 5 Lecture 6 Lecture 7

Equations with Discontinuous Forcing Functions-IV
Example 2

It’s a hot day and you decide to buy Dr. Frigaard a cold beer. It is
poured at 2C in the Pit, which is air-conditioned at 15C. You linger
there 30 minutes, and when you leave the beer is 5C. It takes you
20 minutes to walk to Dr. Frigaard’s office, outside at 30C. What
temperature will the beer be when Dr. Frigaard receives it?

Assume the beer temperature obeys Newton’s Law of Cooling.
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Equations with Discontinuous Forcing Functions-V
Example 2 (cont.)
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Equations with Discontinuous Forcing Functions-VII
Example 2 (cont.)
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Equations with Discontinuous Forcing Functions-VIII
Example 2 (cont.)
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Separable Equations
Nonlinear Equations

Consider again
y ′ = f (x , y)

When f (x , y) is not linear in y we can’t solve the equation
analytically except in special cases.

separable: Here, f has the special form:

f (x , y) =
M(x)

N(y)

autonomous: A special subset of separable equations where f only
depends on y (not x).



Lecture 5 Lecture 6 Lecture 7

Separable Equations-II
Solution Procedure for Separable Equations
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Separable Equations-III
Example 1: y ′ = y 2
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Separable Equations-IV
Example 1: y ′ = y 2 (cont.)
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Separable Equations-IV
Example 2: y ′ =

√
y , y(0) = 0
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Separable Equations-V
Example 3: y ′ = −x/y
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Separable Equations-VI
Example 3: y ′ = −x/y
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Separable Equations-VII
Discussion of Nonlinear Equations

Nonlinear IVP’s can have the following behaviour:

• More than one solution.

• Solutions blow up at a certain x or just cease to exist there.



Lecture 5 Lecture 6 Lecture 7

More Examples
Example 4: y ′ = (3x2 + 4x + 2)/(2y − 2)
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More Examples-II
Example 4: y ′ = (3x2 + 4x + 2)/(2y − 2) (cont.)
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More Examples-III
Example 5: y ′ = (y cos x)/(1 + 2y 2)
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More Examples-IV
Example 5: y ′ = (y cos x)/(1 + 2y 2) (cont.)
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More Examples-V
Summary of Solution Procedure

For separable equations:

1. Separate variables

2. Integrate both sides

3. Plug in the IC to determine the unknown constant (or can be
done after the next step).

4. Solve the implicit equation for y(x) (if possible).
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