
Autonomous Second Order Differential 
Equations 

 

These are systems such as: 
( )
( yxgy

yx
)

fx
,
,

=′
=′

      (1) 

Frequently these system arise in electrical and mechanical systems, 
e.g. if  denotes displacement & Newton’s 2x nd law gives a relation 
of form ( xx )Fx ,′=′′ , then we have the system: 

     ( )xyFy
yx

,=′
=′

Perhaps we want instead to study the forced oscillator  
( ) ( )thxxFx +′=′′ ,  

but for this understanding of the unforced system is anyway needed 
 

Qualitative understanding: 
As with 1st order autonomous systems, we can understand much 
about the behaviour graphically, since (1) does not depend on t . We 
do this by plotting phase paths or solution curves ( ) ( )( )tytx ,  in the 

 phase plane. ( yx, )
� Note that solution curves are tangent everywhere to the vector 

( ) ( )( )yxgyxf ,,,  
� The slope of the phase path in the phase plane is given by  

( )
( )yxf

yxg
dx
dy

,
,

=      (2) 

Sometimes (2) is integrable and we can find phase paths exactly 
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Phase portraits: 
As with 1st order equations, we can plot a type of direction field in 
the phase plane: 

� Set up a grid of points in the phase plane: ( )ji yx ,  

� Through each point, draw an arrow with slope given by (2) 
� Orient the arrow head in the direction of time, see (1) to 

determine the sign of ( )yx ′′,  
There are various software packages that will do this for you, e.g. 

http://math.rice.edu/~dfield/index.html
 

Example 1: Draw the phase portrait for the system  

( )
( ) xyyxyxy

xyyxyxx

333

232
22

22

+−−−=′

+−+−=′
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The phase portrait also refers to a plot of solution curves: 
 

 
We can see various long-time behaviours of solutions: 

� Periodic paths (stable, asymptotically stable or unstable) 
� Critical points 
� Paths that go to  at large times ∞
� Can anything else happen? 

 

Critical points (equilibrium points):  
� These are stationary solutions of the system (1), i.e. neither ( )tx  

nor ( )ty  changes with time 
� These are found as zeros of the system: 

( )
( yxg

yxf
,0
,0

=
=

)       (3) 

Math lecture 26 
 3  MECH 221 



� In complex systems, we find the critical points graphically as the 
intersections of the x and y-nullclines 

 

x- nullcline is where ( )yxf ,0 =  
y-nullclines is where ( )yxg ,0 =  

 

� Plotting nullclines separates phase plane into regions in which 
overall direction of phase paths is determined. 

( )
( ) 0333

0232
22

22

=+−−−

=+−+−

xyyxyx

xyyxyx
 

 
 

� Appears that there are 4 critical points.  
� What is the local behaviour, close to the critical points? 

o Zoom into the square ( ) [ ] [ ]1,11,1, −×−∈yx  
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Nodes 

Saddle point 

This is reminiscent of phase plane behaviour in 2x2 linear systems? 
 

Linearisation about a critical point: 
 

Suppose we have a critical point ( )**, yx , i.e. satisfying (3). Consider 
what happens when we are close to ( )**, yx . Let the solution be:  

( ) ( )( ) ( ) ( ) ( )( )tvtuyxtytx ,,, ** += , 
where ( ) ( )( ) 1, <<tvtu . 

What system does ( ) ( )( )tvtu ,  satisfy? 

( )
dt
duux

dt
d

dt
dx

=+= *  

Perform Taylor expansion in 2 dimensions: 

( ) ( ) ( ) ( ) ( )( )2******** ,,,,, vuOyx
y
fvyx

x
fuyxfvyuxf +

∂
∂

+
∂
∂

+=++  
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Retain only the 1st order terms in ( ) ( )( )tvtu , : 

( ) ( )

( ) ( )****

****

,,

,,

yx
y
gvyx

x
gu

dt
dv

yx
y
fvyx

x
fu

dt
du

∂
∂

+
∂
∂

=

∂
∂

+
∂
∂

=
 

This is a constant coefficient 2x2 linear system: 

( ) ( )
( ) ( )
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⎟
⎟
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∂
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∂
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∂
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∂
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⎜
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v
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,,
 

We know that the character of the linear system close to the critical 
point ( ) ( )( ) ( 0,0, = )tvtu  depends only on the eigenvalues of: 

( ) ( )
( ) ( )⎟⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∂
∂

∂
∂

∂
∂

∂
∂

****

****

,,

,,
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x
g
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y
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x
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Example 2: Show the critical point ( ) ( )0,0, ** =yx , of the system  

( )
( ) xyyxyxy

xyyxyxx

333

232
22

22

+−−−=′

+−+−=′
 

is a saddle point. 
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Example 3: (Damped nonlinear pendulum) For the following 
system, sketch the nullclines, find and classify the critical points 
according to a local linear approximation: (i) if 1=α ; (ii) if 0=α . 

yxy
yx

α−−=′
=′

sin
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α=1 

α=0 
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Conservative Mechanical Systems 
 

Suppose that  denotes displacement & Newton’s 2x nd law gives a 
relation of form ( )xFx =′′ , e.g. a linear spring, then we have the 
system of form: 

( )xFy
yx

=′
=′

      (1) 

The phase paths have slope 
( ) ( )dxxFydy
y
xF

dx
dy

=⇒=  

Integrating both sides of this relation gives: 

( ) constant
2

2
==+ ExVy    (2) 

where 

( ) ( )∫−=
x

dssFxV  

The first term in (2) represents the kinetic energy of the system, 
( )xV  represents potential energy. The total energy E  is a constant.  

 

We can see this another way by differentiating (2) with respect to t  

( )

( ) ( ) 0=−=

′−′=′+′=

yxFxyF

xxFyyx
dx
dVyy

dt
dE

 

 

The phase paths of (1) are equivalent to the level lines of (2), which 
may be an implicit relation.  
 
Math lecture 27 
 1  MECH 221 



Example 1: (undamped nonlinear pendulum) Find the total 
energy for the system:  

xy
yx

sin−=′
=′

 

and hence plot the phase paths. 
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Critical points & the potential energy: 
� The critical points of a conservative system such as (1) are 

where  and where 0=y ( )xV  has extrema 
� Minima of  are centres and maxima are saddle points, as 

can be seen from linear approximation 
( )xV

 
 
 
 
 
 

Example 2: Qualitatively sketch the phase paths of the conservative 
system with potential energy illustrated below.  
 

x 

V(x)  
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Damping & nonlinear stiffness:  
In a conservative system, changing the stiffness manifests in ( )xV , 
addition of (positive) damping has the effect of stabilising.  
Often this manifests in those critical points that were centres for the 
undamped system becoming asymptotically stable spirals for the 
damped system, (e.g. damped pendulum in last lecture). 
 
Example 3: Duffing’s oscillator with negative linear stiffness 

m
lxaykxy

yx
3++

−=′

=′
 

(If 0>k  and , this is a linear oscillator & damped for ) 0=l 0>a
 

1,1,0,1 ===−= mlak : undamped oscillator 
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1,1,1.0,1 ===−= mlak : two phase paths plotted 

 
1,1,5.0,1 ===−= mlak : two phase paths plotted  

 
 

Math lecture 27 
 5  MECH 221 



Example 4: Van der Pol’s oscillator  

3yMyxy

yx

−+−=′

=′
 

This is a linear oscillator with negative linear damping, but positive 
nonlinear damping. 
For large enough velocities, we expect decay of the energy, but not 
for small velocities – what happens? 

 
 
This stable structure is called a limit cycle and is just a stable 
periodic solution, (we can also have unstable limit cycles) 
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Energy interpretation of damped conservative systems:  
The previous two oscillators were of general form: 

( ) ( )ycxFy
yx

−=′
=′

    (4) 

where  denotes the damping function. ( )yc
If we multiply the second equation in (4) by  and use the first 
equation, we have: 

y

( ) ( )yycxxFyy −′=′     (5) 
We integrate (5) with respect to t  : 

( ) ( )( ) ( ) ( )( ) ( ) constant
2

2
=+=++ ∫∫

tt dssysycEdssysycxVy  

Thus, our energy conservation is modified by the damping term.  
Now if we differentiate with respect to t  , we see that (5) in fact 
means that    

( )yyc
dt
dE

−=  

i.e. the total energy along a stream path is reduced, by the damping, 
at rate .  ( )yyc−

� Duffings equation: , and we saw that the 
solutions all eventually spiralled into one of two asymptotically 
stable critical points. As we increased a  the decay rate of the 
energy grew & we spiral inwards faster. 

( ) 02 >= ayyyc

� Van der Pol’s oscillator: ( ) 42 yMyyyc +−= . For large  we 
lose energy, but for small  we gain energy! Thus, all large 
amplitudes decay, but not to zero. The limit cycle represents the 
path where the net increase in energy balances the decrease, 
over one cycle. 

y
y
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