Mech 221 Mathematics Component Differential Equations

Brian Wetton

www.math.ubc.ca/~wetton

Lectures 24-25

Outline

Lecture 24

Method of Undetermined Coefficients Examples

Lecture 25

Variation of Parameters Examples Formula for Second Order Scalar Problems

Outline

Lecture 24 Method of Undetermined Coefficients Examples

Lecture 25

Variation of Parameters Examples Formula for Second Order Scalar Problems

Method of Undetermined Coefficients

Linear, Constant Coefficient, Homogeneous Systems

 $\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{f}(t)$

Remember, the general solution of the inhomogeneous problem can be written

$$\mathbf{x}(t) = \mathbf{x}_p(t) + \mathbf{x}_c(t) = \mathbf{x}_p(t) + \mathbf{\Phi}(t)\mathbf{c}$$

where $\mathbf{\Phi}(t)$ is a fundamental solution. There are two methods to find particular solutions:

- 1. For specific kinds of functions f(t) there is the Method of Undertermined Coefficients.
- 2. Variation of parameters.

Method of Undetermined Coefficients-II

- The Method of Undetermined Coefficients for linear first order systems is the same as that for first and second order scalar problems *except* that the coefficients in **f** are vectors and the unknown parameters in **x**_p are also vectors.
- The resonant case is tricky to explain, we'll see what happens in examples.

Examples Example 1

Find the general solution to

$$\mathbf{x}' = \left[\begin{array}{cc} 1 & 1 \\ 4 & 1 \end{array} \right] \mathbf{x} + \left[\begin{array}{c} 0 \\ 1 \end{array} \right]$$

Lecture 25 000 000000 000

Examples-II Example 1 (cont.)

Examples-III Example 2

Find the general solution to

$$\mathbf{x}' = \begin{bmatrix} -1 & -4 \\ 1 & -1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 2\sin t \\ -e^{-3t} \end{bmatrix}$$

Lecture 25 000 000000 000

Examples-IV Example 2 (cont.)

Lecture 25 000 000000 000

Examples-V Example 2 (cont.)

Examples-VI Example 3

Find the general solution to

$$\mathbf{x}' = \left[egin{array}{cc} 2 & -1 \ 3 & -2 \end{array}
ight] \mathbf{x} + \left[egin{array}{cc} 2e^{-t} \ -e^{-t} \end{array}
ight]$$

Lecture 25 000 000000 000

Examples-VII Example 3 (cont.)

Lecture 25 000 000000 000

Examples-VIII Example 3 (cont.)

Outline

Lecture 24

Method of Undetermined Coefficients Examples

Lecture 25

Variation of Parameters Examples Formula for Second Order Scalar Problems

Variation of Parameters

$$\mathbf{x}' = \mathbf{A}(t)\mathbf{x} + \mathbf{f}(t)$$
 with $\mathbf{x}(t_0) = \mathbf{x}_0$

If $\Psi(t)$ is a fundemental solution (to the homogeneous problem) then the solution to the IVP above is

$$\mathbf{x}(t) = \mathbf{\Phi}(t) \int_{t_0}^t \mathbf{\Phi}^{-1}(s) \mathbf{f}(s) ds + \mathbf{\Phi}(t) \mathbf{\Phi}^{-1}(t_0) \mathbf{x}_0$$

You can recognize this as being in the form:

$$\mathbf{x}(t) = \mathbf{x}_p(t) + \mathbf{x}_c(t)$$

Note that this formula does not require **A** to be constant coefficient.

Variation of Parameters-II Derivation

To derive the Variation of Parameters formula, begin by considering

$$\mathbf{x}(t) = \mathbf{\Phi}(t)\mathbf{u}(t)$$

with $\mathbf{u}(t)$ to be determined.

Variation of Parameters-III Derivation (cont.)

Examples Example 1

Find the general solution of

$$\mathbf{x}' = \begin{bmatrix} -2 & 1\\ 1 & -2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 2e^{-t}\\ 3t \end{bmatrix}$$

Examples-II Example 1 (cont.)

Examples-III Example 1 (cont.)

Examples-IV Example 2

Find the general solution of

$$\mathbf{x}' = \begin{bmatrix} -1 & -4 \\ 1 & -1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 2\sin t \\ -e^{-3t} \end{bmatrix}$$

Examples-V Example 2 (cont.)

Examples-VI Example 2 (cont.)

Formula for Second Order Scalar Problems

Consider the second order problem

$$\ddot{x} + p(t)\dot{x} + q(t)x = f(t).$$

Two independent solutions $x_1(t)$ and $x_2(t)$ to the *homogeneous* problem are known. Write as a first order system and use Variation of Parameters to find a formula for a particular solution to this problem.

Formula for Second Order Scalar Problems-II

Formula for Second Order Scalar Problems-III

