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Systems of First Order Linear Equations
Form of Equations

Here, there are are n unknowns

x1(t), x2(t), . . . xn(t)

that satify equations

x ′1 = a11(t)x1(t) + a12(t)x2(t) + . . . + a1nxn(t) + f1(t)

x ′2 = a21(t)x1(t) + a22(t)x2(t) + . . . + a2nxn(t) + f2(t)
...

x ′n = an1(t)x1(t) + an2(t)x2(t) + . . . + annxn(t) + fn(t)

where the functions aij(t) and fj(t) are given.
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Systems of First Order Linear Equations-II
Where do These Come From?

• Coupled systems of oscillators.

• LRC networks.

• Coupled chemical reaction and mixing processes.

• Ecological models, population growth, epidemics.

• Discretizations of continuum models.

• Higher order equations and systems can be reduced to first
order systems.

The size n of systems in practical applications can be very large.
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Systems of First Order Linear Equations-III
Example

Convert the linear equation

d4u

dt4
− u = 0

to a first order linear system.
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Phase Plane

In two dimensions, we can plot a solution as a parametric curve
(x1(t), x2(t)).

In this diagram the x1 − x2 plane is called the phase plane.
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Phase Plane-II
Discussion

• Information is lost in the phase plane picture - the times at
which the solution is at each point on the curve.

• This can be compensated somewhat by labelling some points
with the times they correspond to, or at least adding arrows
with the direction of increasing time.

• The phase plane is particularly useful in the autonomous case,
where none of the aij or fj depend on t. In this case,
trajectories in the phase plane can’t cross.

• Phase plane analysis is also useful for autonomous nonlinear
systems with two unknowns.
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Phase Plane-III
Example

Consider the equation (underdamped spring)

ẍ + ẋ + x = 0

1. Find the solution when x(0) = 1 and ẋ = 0.

2. Write the equation as a first order system.

3. Plot the solution you found in part #1 in the phase plane.
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Phase Plane-IV
Example (cont.)
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Phase Plane-V
Example (cont.)



Lecture 20 Lecture 21 Lecture 22 Lecture 23

Matrix Form of the Equations

The system was labelled so it can naturally be written

x′ = Ax + f

where

x =


x1

x2
...
xn

 f =


f1
f2
...
fn

 A =

 a11 . . . a1n
...

. . .
...

an1 . . . ann


A solution is a vector x(t).



Lecture 20 Lecture 21 Lecture 22 Lecture 23

Matrix Form of the Equations
Example

Write the linear system corresponding to

d4u

dt4
− u = 0

in matrix form.
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Matrix Form of the Equations
Superposition

Linear systems obey the usual superposition principle. If x1(t) and
x2(t) solve the problems

x1(t) = A(t)x1 + f1(t)

x2(t) = A(t)x2 + f2(t)

(same matrix, different forcing terms) then w = c1x1 + c2x2 solves

w(t) = A(t)w + c1f1(t) + c2f2(t)

(same matrix, linear combination of forcing terms).

In particular, this shows that linear combinations of solutions to
the homogeneous problem (f ≡ 0) are also solutions of the
homogeneous problem.
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Matrix Form of the Equations
Matrix of Homogeneous Solutions

If x1, x2, . . . xn are all (homogeneous) solutions of

x′ = Ax

then the principle of superposition shows that

x = c1x1 + c2x2 + . . . + cnxn

is also a homogeneous solution. This can be written in the
compact form

x = Φc

where c is the column vector of c values and Φ is the matrix with
the vectors xj as columns.
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Matrix Form of the Equations
Matrix of Homogeneous Solutions (cont.)

Φ = [x1|x2| . . . |xn]

Note that Φ solves the vector system:

Φ′ = AΦ

(verify column by column).
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Theory of First Order Linear Equations
IVP

The problem for x(t)

x′ = A(t)x + f(t)

where A(t), f(t) are given and intial data

x(t0) = x0

are also given, has a unique solution in an interval in t around t0
extending to values of t (if any) where the functions in A(t) or
f(t) have singularities.
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Theory of First Order Linear Equations-II
Complementary (Homogeneous) + Particular

x′ = A(t)x + f(t)

Using the usual superposition argument, the general solution of
this problem can be written as

x(t) = xc(t) + xp(t)

where xp(t) is any particular solution of the inhomogeneous
problem (with the f) and xc(t) is any complementary solution of
the homogeneous problem (with f ≡ 0).
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Theory of First Order Linear Equations-III
Solving the IVP

x(t) = xc(t) + xp(t)

To solve the IVP, we need to find xc(t) such that

xc(t0) = x0 − xp(t0)

Thus, we need to find complementary solutions capable of
matching any initial conditions.
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The Fundamental Matrix

Let ej be the standard basis vectors of Rn:

e1 =


1
0
...
0

 e2 =


0
1
...
0

 . . . en =


0
0
...
1


Let xj be the solution of

x′j = Axj

with xj(t0) = ej .
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The Fundamental Matrix-II

We can make a matrix of these solutions like last lecture

Ψ = [x1|x2| . . . |xn]

Note that Ψ(t0) = I (the n × n identify matrix). Ψ is called the
Fundamental Matrix. We showed last lecture that for any constant
vector c

x = Ψc

is a solution to the homogeneous problem

x′ = Ax.
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Fundamental Matrix-III
Solving the IVP

If we take
x = Ψx0

then
x(t0) = Ix0 = x0

so we have a nice formula for the solution of the initial value
problem for any initial conditions.
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Fundamental Matrix-IV
Other Fundamental Matrices

Suppose we had n solutions of the homogeneous problem
x1, x2, . . . xn that we find somehow. Put them in a matrix

Φ = [x1|x2| . . . |xn]

as before and consider linear combinations

Φc

Under what conditions on Φ can we solve any IVP?
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Fundamental Matrix-V
Other Fundamental Matrices (cont.)
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Wronskian
Using Ψ to solve the IVP at another time

Consider again the Fundamental Matrix Ψ with Ψ(t0) = I. Linear
combinations are

Ψc

Can we choose c to solve the IVP given at another time t?

Ψ(t)c = x0

can be solved for any initial data x0 as long as Ψ(t) is invertible
(equivalent to its determinant is not zero).
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Wronskian-II
Abel’s Formula

The Wronskian W (t) is the determinant of Ψ(t). We know
W (t0) = 1, we want to show that W (t) is not zero at other times.
Key Lemma (Abel’s Formula):

W ′ = W trace [A(t)]

The trace of a matrix is the sum of its diagonal entries.
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Wronskian-III
Abel’s Formula (cont.)



Lecture 20 Lecture 21 Lecture 22 Lecture 23

Wronskian-IV
Summary

• To solve any IVP for the homogeneous problem we need to
find n different (linearly independent) solutions.

• If the solutions are linearly independent at any time, they are
linearly independent at all times.

• If the solutions are linearly dependent at any time, they are
linearly dependent at all times. In fact, one must be a fixed
linear combination of the others.
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Homogeneous Constant Coefficient Systems
Exponential Solutions

Systems like
x′ = Ax

where A is a constant n × n matrix. Experience with scalar linear
equations suggests that solutions that are exponential in time may
exist. Look for solutions in the form:

x(t) = kert

where k is a constant vector.
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Homogeneous Constant Coefficient Systems-II
Exponential Solutions (cont.)
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Homogeneous Constant Coefficient Systems-III
Exponential Solutions (cont.)

x′ = Ax has solutions of the form x(t) = kert

when r is an eigenvalue of A and k is a corresponding eigenvector.
Procedure for Eigenanalysis: First, find r that solve

det(A− r I) = 0 roots of an n’th order polynomial

If r is an eigenvalue then a corresponding eigenvector k is nonzero
and solves

(A− r I)k = 0.
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Homogeneous Constant Coefficient Systems-IV
Exponential Solutions (cont.)

Recall:

• Eigenvalues of A can be real or complex, distict or repeated.

• Eigenvectors from different eigenvalues are linearly
independent.

• There is always at least one eigenvector for every eigenvalue.
For repeated eigenvalues, you can have the same number of
linearly independent eigenvalues as the multiplicity of the
eigenvalue (or possibly fewer).

• We will consider in this course only the “nice” case in which A
has n linearly independent eigenvectors (A is diagonalizable).

• In this case, we have n linearly independent solutions to the
homogeneous problem. From the theory last lecture, we can
construct a Fundamental Solution.
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Systems with Real Eigenvalues
Case of n Distinct, Real Eigenvalues

{r1, r2, . . . rn}

• For each eigenvalue we can find an eigenvector.

• xj = kje
rj t solves the homogeneous problem. These vectors

are linearly independent at t = 0 so

Ψ =
[
k1e

r1t |k2e
r2t | · · · |kne

rnt
]

is a Fundamental solution.

• The general solution of the homogeneous problem is

Ψc = c1k1e
r1t + c2k2e

r2t + · · ·+ cnkne
rnt
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Systems with Real Eigenvalues-II
Example 1

Find the general solution of:

dx

dt
= −3x − 2y

dy

dt
= −2x − 6y

and sketch the behaviour of solutions in the phase plane x − y .



Lecture 20 Lecture 21 Lecture 22 Lecture 23

Systems with Real Eigenvalues-III
Example 1 (cont.)
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Systems with Real Eigenvalues-IV
Example 2

1. Find the general solution of:

dx

dt
= −2y

dy

dt
= −2x − 3y

and sketch the behaviour of solutions in the phase plane x − y .

2. Find the solution that satisfies x(0) = 1, y(0) = β.

3. For what value of β does your solution satisfy x(t) → 0 as
t →∞?
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Systems with Real Eigenvalues-V
Example 2 (cont.)
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Systems with Real Eigenvalues-V
Example 3

Find the Fundamental Matrix Ψ(t) (for initial conditions at t = 0)
solution to the previous example. Also write the general formula for
Ψ for constant coefficient problems with distinct, real eigenvalues.
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Systems with Real Eigenvalues-V
Example 3 (cont.)
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Systems with Real Eigenvalues
Matrix Exponential

Ψ(t) = TΛ(t)T−1 has the property that

x(t) = Ψ(t)x0

solves x′ = Ax with x(0) = x0. Consider the scalar problem

x ′ = ax with x(0) = x0

with solution x(t) = eatx0. This should tempt us to denote

Ψ(t) = eAt

This is not just formal notation. In fact, it can be shown that

Ψ(t) =
∞∑
j=0

(At)j

j!
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Phase Plane
Stability and Instability of x = 0

Note that x ≡ 0 is an equilibrium solution of

x′ = Ax

(the only equilibrium solution unless A is singular). We are
interested in the stability of this equilibrium:

stable: (asymptotically stable) All solutions approach 0 as
t →∞.

unstable: There are points arbitrarily close to 0 such that
solutions x(t) starting with initial values at these
points satisfy |x(t)| → ∞ as t →∞.

Let’s look at what can happen in the n = 2 case, where we can
graph solutions in the phase plane.
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Phase Plane-II
Saddle Point

Real distinct eigenvalues of
different signs. The general
solution is of the form:

x(t) = c1k1e
r1t + c2k2e

r2t

with r1 > 0 and r2 < 0. In this
case, 0 is unstable.
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Phase Plane-III
Nodal Point

Real distinct eigenvalues of the
signs. The general solution is
of the form:

x(t) = c1k1e
r1t + c2k2e

r2t

In this case, 0 is unstable if
the eigenvalues are positive
(nodal source) and stable if
the eigenvalues are negative
(nodal sink).
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Systems with Complex Eigenvalues
Conjugate Pairs

Complex eigenvalues of real matrices A occur in conjugate pairs
r1,2 = a± ib. If the eigenvector that corresponds to r1 is
k = kR + ikI then it can be shown that the eigenvector
corresponding to r2 is its conjugate kR − ikI .
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Systems with Complex Eigenvalues-II
Complex Eigensolutions
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Systems with Complex Eigenvalues
Real Eigensolutions

By taking linear combinations of the complex solutions we can find
the following independent real homogeneous solutions:

x1(t) = eat (kR cos bt − kI sin bt)

x2(t) = eat (kI cos bt + kR sin bt)
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Examples
Example 1

Find the general solution of

dx

dt
= −x + 2y

dy

dt
= −2x − y

and sketch the solutions in the phase plane.
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Examples-II
Example 1 (cont.)
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Examples-III
Example 2

Describe the different possible behaviours of solutions to

dx

dt
= αx + 2y

dy

dt
= −2x + αy

in the phase plane for different values of the parameter α.
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Examples-IV
Example 2 (cont.)
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Examples-V
Example 3

Find the general solution of

dx

dt
= x

dy

dt
= 2x + y − 2z

dz

dt
= 3x + 2y + z
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Examples-VI
Example 3 (cont.)
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Examples-VII
Example 3 (cont.)
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Phase Plane
Spiral Point

x(t) = c1e
at (kR cos bt − kI sin bt) + c2e

at (kI cos bt + kR sin bt)

If a > 0 the origin is unstable
(spiral source). If a < 0 the
origin is stable (spiral sink).
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Phase Plane-II
Centre

If the eigenvalues are purely
imaginary then all solutions are
periodic. The origin is stable
(but not asymptotically
stable).
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