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Spring Mass Systems

• We consider only spring
mass systems as shown

• Many other
electrical/mechanical
vibrations are also
governed by the same
second order differentials
considered here.
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Spring Mass Systems-II
Preliminaries

• Let L be the natural length of the spring, m the mass of the
weight and f (t) an applied force (upwards).

• Let the length of the spring be denoted by l(t).

• Neglect the mass of the spring itself.

• From Newton’s second law:

m
d2l

dt2
= mg + fd(t) + fs(t)− f (t)

where g is the gravitational acceleration, fd(t) is the force due
to damping and fs(t) is the force that the spring exterts.
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Spring Mass Systems-III
Preliminaries (cont.)

m
d2l

dt2
= mg + fd(t) + fs(t)− f (t)

• Hooke’s law gives

fs(t) = −k [l(t)− L]

where k is the spring constant.
• The damping force fd(t) is due to friction with the fluid and

opposes the motion of the weight. It is assumed that friction
is proportional to the speed of the weight:

fd(t) = −β
dl

dt
where β is the damping coefficient.

m
d2l

dt2
= mg − β

dl

dt
− k [l(t)− L]− f (t)
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Spring Mass Systems-IV
Preliminaries (cont.)

m
d2l

dt2
= mg − β

dl

dt
− k [l(t)− L]− f (t)

• Consider the equilibrium position l ≡ L∗, with no external
forcing and no movement of the spring l ′ ≡ 0 and l ′′ ≡ 0:

0 = mg − k [L∗ − L]

or L∗ = L + mg/k. L∗ is the equilibrium position of the
spring, mg/k is the equilibrium extension of the spring.

• Define x(t) (the distance above the equilibrium position) by

l(t) = L∗ − x(t)

• We obtain

m
d2x

dt2
+ β

dx

dt
+ kx = f (t)
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Undamped Case
Simple Harmonic Motion

If there is no damping (β = 0) and no forcing (f ≡ 0) then

m
d2x

dt2
+ kx = 0

The general solution is

x(t) = c1 cos ω0t + c2 sin ω0t.

where ω0 =
√

k
m is the natural (angular) frequency of the spring

mass system. The period of oscillation is

T =
2π

ω0
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Undamped Case-II
Amplitude-Phase Form of the Solution

x(t) = c1 cos ω0t + c2 sin ω0t.

This solution can be written in the form

x(t) = R cos(ω0t − φ)

where R is the amplitude and φ is the phase angle. By convention
(but different convetions in different fields) we will take
−π < φ ≤ π.
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Undamped Case-III
Amplitude-Phase Form of the Solution (cont.)
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Undamped Case-IV
Example

The natural length of a spring is 1m. A mass is attached to the
end and the length increases to 1.02m at equilibrium. The mass is
then displaced upward by 1cm from the equilibrium position and
released with upward velocity of 14cm/s.

1. Find the natural frequency and period of the system.

2. Find the displacement x(t).

3. Find the amplitude and phase angle of the motion.
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Undamped Case-V
Example (cont.)
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Undamped Case-VI
Forced Oscillations

Solve the IVP

ẍ + ω2
0x = cos ωt with x(0) = 0 and ẋ(0) = 0

with ω 6= ω0
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Undamped Case-VII
Resonant Forced Oscillations

Solve the IVP

ẍ + ω2
0x = cos ω0t with x(0) = 0 and ẋ(0) = 0
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Forcing Close to Resonant Frequency
Beats

It seems odd that the solutions of the resonant case are unbounded
in t but the non-resonant case are bounded, no matter how close
to resonance we are. Let’s consider the non-resonant solution more
closely:

x(t) =
cos ωt − cos ω0t

ω2
0 − ω2

It can be shown that this solution can be rewritten in the form:

x(t) =
2

ω2
0 − ω2

sin

[
ω0 − ω

2
t

]
sin

[
ω0 + ω

2
t

]
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Forcing Close to Resonant Frequency-II
Beats(cont.)
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Forcing Close to Resonant Frequency-III
Beats(cont.)
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Forcing Close to Resonant Frequency-IV
Beats(cont.)

x(t) =
2

ω2
0 − ω2

R(t) sin

[
ω0 + ω

2
t

]
where R(t) = sin

[
ω0−ω

2 t
]

can be thought of as an amplitude.

• For ω far from ω0 there is no insight gained by this form.

• For ω close to ω0 the frequency of sin
[

ω0+ω
2 t

]
approaches the

natural frequency. R(t) becomes large and the period
T = 4π/|ω0 − ω| becomes very large. |ω0 − ω|/2 is the beat
frequency.
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Forcing Close to Resonant Frequency-V
Pictures of Beats ω0 = 54

ω = 44

ω = 47

ω = 50
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Forcing Close to Resonant Frequency-VI
Pictures of Beats ω0 = 54 (cont.)

ω = 53

ω = 56

ω = 59
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Forcing Close to Resonant Frequency-VII
Picture of Resonance
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Spring Oscillations with Damping
Free Oscillations

mẍ + βẋ + kx = 0

we consider β > 0 (positively damped).

1. What happens for “small” and “large” β?

2. What do we mean by “small” and “large” β?

Characteristic equation is:

mr2 + βr + k = 0

with roots

r1,2 =
−β ±

√
β2 − 4km

2m
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Spring Oscillations with Damping-II
Free Oscillations (cont.)

r1,2 =
−β ±

√
β2 − 4km

2m

Three cases:

1. β2 < 4km (small β) roots are complex - underdamped motion.

2. β2 > 4km (large β) roots are real - overdamped motion.

3. β2 = 4km repeated real roots critically damped motion.

Note that for β > 0 the real parts of r1,2 are always both negative.
Thus, we always have exponential decay of the solutions as t →∞.
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Spring Oscillations with Damping-III
Overdamped and Critically Damped Cases

Overdamped

r1,2 =
−β ±

√
β2 − 4km

2m

are both real and negative.

x(t) = c1e
r1t + c2e

r2t

Critically Damped

r = − β

2m

x(t) = c1e
rt + c2te

rt
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Spring Oscillations with Damping-IV
Underdamped

x(t) = e−βt/(2m) [c1 cos ω1t + c2 sin ω1t]

where

ω1 =

√
k

m
−

(
β

2m

)2

is the quasi-frequency. This can also be written in phase-amplitude
form:
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Spring Oscillations with Damping-V
Example

A mass of 64g stretches a spring 6cm in equilibrium and a dashpot
provides a linear damping force to the system.

1. Determine the spring constant k

2. Determine the value of the damping constant β for which the
system is critically damped.

3. Find the displacement from equilibrium x(t) if the mass is
released from position x(0) = 3cm with zero velocity.
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Spring Oscillations with Damping-VI
Example (cont.)
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Forced Spring Oscillations with Damping

mẍ + βẋ + kx = F0 cos ωt

The general solution is of the form

x(t) = xc(t) + xp(t)

where xp(t) is of the form (MUC)

xp(t) = a cos ωt + b sin ωt

and xc(t) has one of the forms from the previous section
(depending on the size of β) all of which decay to 0 as t →∞.
Thus we call xc(t) the transient part of the solution and xp(t) the
steady state part.
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Forced Spring Oscillations with Damping-II
Example

Assuming m, k, β, and F0 are constant, what value of the forcing
frequency ω produces the largest amplitude steady state response?
The smallest steady state response?
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Forced Spring Oscillations with Damping-III
Example (cont.)
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Forced Spring Oscillations with Damping-IV
Example (cont.)



Lecture 18 Lecture 18

Forced Spring Oscillations with Damping-V
Example (cont.)

What does the previous example tell you about the speed you
should drive on a bumpy road to make the ride as smooth as
possible?
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Scaling the Damped Spring Equation

mẍ + βẋ + kx = F0 cos ωt

Scale x and t to make this equation dimensionless and as simple as
possible.
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Scaling the Damped Spring Equation-II
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