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Second Order DE Applications
General Linear Second Order DE

d2y

dt2
+ p(t)

dy

dt
+ q(t)y = g(t)

where p(t), q(t), and g(t) are given functions.

In particular, we will look (again) at a simpler class of linear
equations where the coefficients are constants:

A
d2y

dt2
+ B

dy

dt
+ Cy = g(t)

(A 6= 0). Even these simpler DEs occur in many applications.
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Second Order DE Applications-II
Applications

Damped spring systems:

m
d2x

dt2
+ β

dx

dt
+ kx = f (t)

Small oscillations of a
pendulum:

mL2 d2θ

dt2
+cL

dθ

dt
+mgLθ = F (t)
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Second Order DE Applications-III
Applications (cont.)

LRC series circuits:

L
d2Q

dt2
+ R

dQ

dt
+

1

C
Q = E (t)

Tortional motion of a weight
on a twisted shaft:

I
d2θ

dt2
+ c

dθ

dt
+ kθ = T (t)
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Second Order DE Applications-IV
Applications (cont.)

Combined diffusion, convection
and reaction of a chemical in a
permeable channel.

D
d2a

dx2
− V

da

dx
− ka− s(x) = 0
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General Discussion
IVP

The second order linear problem

d2y

dt2
+ p(t)

dy

dt
+ q(t)y = g(t)

must also have initial data a and b specified:

y(t0) = a

y ′(t0) = b

The DE and initial data together make an Initial Value Problem
(IVP).
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General Discussion-II
IVP (cont.)

d2y

dt2
+ p(t)

dy

dt
+ q(t)y = g(t)

with y(t0) and y ′(t0) given.

Q: Why two pieces of data?

1. To solve the problem for y you have to “integrate” twice.

2. If y were a position then the DE gives the acceleration. To
specify position given acceleration you need to know the initial
position and velocity.

Theory: The IVP above has a unique solution defined in an
interval around t0 up to values of t (if any) where p, q or g have
singularities.
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General Discussion-III
Superposition

If y1 and y2 solve the linear problems below (same DE, different
RHS):

d2y1

dt2
+ p(t)

dy1

dt
+ q(t)y1 = g1(t)

d2y2

dt2
+ p(t)

dy2

dt
+ q(t)y2 = g2(t)

Then the linear combination w = c1y1 + c2y2 solves

d2w

dt2
+ p(t)

w

dt
+ q(t)w = c1g1(t) + c2g2(t)

(same DE, linear combination of the RHS).

In particular, linear combinations of complementary
(homogeneous) solutions (with zero RHS) are also complementary
solutions. We could say that complementary solutions form a linear
subspace of functions.
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General Discussion-IV
Complementary and Particular Solutions

If y1 and y2 solve the same linear problem (same DE, same RHS):

d2y1

dt2
+ p(t)

dy1

dt
+ q(t)y1 = g(t)

d2y2

dt2
+ p(t)

dy2

dt
+ q(t)y2 = g(t)

Then their difference w = y1 − y2 solves

d2w

dt2
+ p(t)

w

dt
+ q(t)w = 0

This is the complementary (homogeneous) problem. This shows
that any solution y of

d2y

dt2
+ p(t)

dy

dt
+ q(t)y = g(t)

can be written as
y = yc + yp

where yp is a particular solution of the non-homogeneous problem
above and yc is a solution of the complementary (homogeneous)
problem.
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Some Theory
Fundamental Solutions

Consider the homogeneous equation:

d2y

dt2
+ p(t)

dy

dt
+ q(t)y = 0

Let

• y1 be a solution with y1(0) = 1, y ′1(0) = 0.

• y2 be a solution with y1(0) = 1, y ′1(0) = 0.

Now, y = ay1 + by2 solves the homogeneous problem above and
satisfies the initial conditions:

y(0) = a

y ′(0) = b

We have shown that the space of homogeneous solutions is two
dimensional.
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Some Theory-II
Wronskian

Q: Can the fundamental solutions solve the homogeneous IVP
specified at other times?

y(t0) = a

y ′(t0) = b

Let’s see. Try c1y1 + c2y2 in these initial conditions.
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Some Theory-III
Wronskian (cont.)

W (t) = y1y
′
2 − y2y

′
1

We know that W (0) = 1. We want to show that W 6= 0 for other
t.
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Some Theory-IV
Wronskian (cont.)
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Some Theory-V
Wronskian (cont.)

In fact, if W = 0 at any value of t then y1 and y2 must be the
same function (possibly multiplied by a constant).
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Some Theory-VI
Wronskian (cont.)
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Some Theory-VII
Summary

d2y

dt2
+ p(t)

dy

dt
+ q(t)y = 0

• Look for two different solutions y1 and y2.

• The general solution is c1y1 + c2y2.

• Any initial conditions at any value of t can be matched by
this general solution.
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Homogeneous Linear Constant Coefficient Equations
Exponential Solutions

A
d2y

dt2
+ B

dy

dt
+ Cy = 0

(A 6= 0). From the discussion last lecture, we expect 2 different
solutions to this problem. First order linear, constant coefficient,
homogeneous problems had exponential solutions, so let’s look for
exponential solutions here also:

y = ert
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Homogeneous Linear Constant Coefficient Equations-II
Auxilliary Equation

The auxilliary (characteristic) equation

Ar2 + Br + C = 0

with solutions

r = r1,2 =
−B ±

√
B2 − 4AC

2A

Three cases:

• Two distinct real roots if B2 − 4AC > 0.

• A single (repeated) real root if B2 − 4AC = 0.

• Distinct complex conjugate roots if B2 − 4AC < 0.
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Real Roots
Case of Two Distinct Real Roots

A
d2y

dt2
+ B

dy

dt
+ Cy = 0

Auxilliary Equation
Ar2 + Br + C = 0

has two real roots r1 and r2. Thus, y1(t) = er1t and y2(t) = er2t

are (different) solutions so the general solution is

y(t) = c1e
r1t + c2e

r2t
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Real Roots-II
Example 1

Find the general solution of

y ′′ − 2y ′ − 2y = 0
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Real Roots-III
Example 2

Solve the IVP

y ′′ + 3y ′ + 2y = 0 with y(0) = 1, y ′(0) = −1
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Real Roots-IV
Real Repeated Root

r = r1,2 =
−B ±

√
B2 − 4AC

2A

In the case of a repeated root, the root is r = −B/(2A) and
B2 − 4AC = 0. One homogeneous solution is

y1(t) = ert

We need another solution. It can be shown that in this case,

y2(t) = tert .
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Real Roots-V
Real Repeated Root (cont.)
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Real Roots-VI
Example 3

Solve the IVP

y ′′ − 6y ′ + 9y = 0 with y(0) = −1, y ′(0) = 1
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Real Roots-VI
Large Time Qualitative Behaviour

In general we could have any combination of real exponents:

• If 0 < r1 ≤ r2 then the solution grows exponentially and at
large times the term c2e

r2t (or c2te
rt for repeated root) will

dominate at large times.

• If r1 ≤ r2 < 0 then the solution decays exponentially to zero.
The first term decays faster and so the solution will be
dominated by the term c2e

r2t (or c2te
rt for repeated root)

• If r1 < 0 < r2 then in general the solution grows exponentially
and will be dominated by c2e

r2t at large times. However, for
initial conditions that give c2 = 0 exactly, the solution will
decay exponentially. However, in applications, noise will
always generate the exponentially growing behaviour.
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Complex Roots

A
d2y

dt2
+ B

dy

dt
+ Cy = 0

Auxilliary Equation
Ar2 + Br + C = 0

Complex roots occur when B2 − 4AC < 0, then

r1 = a + ib

r2 = a− ib

where

a = − B

2A

b =

√
4AC − B2

2A



Lecture 14 Lecture 15 Lecture 16 Lecture 17

Complex Roots-II
Complex Exponentials

Our solutions are

y1(t) = e(a+ib)t

y2(t) = e(a−ib)t

We need to make sense of the complex exponential to proceed:

ea+ib = ea(cos b + i sin b)

(definition). This satisfies all the properties of the “real”
exponential

• ea1+b1iea2+b2i = e(a1+a2)+(b1+b2)i

• This justifies our use of the complex exponential solution:

d

dt
e(a+ib)t = (a + ib)e(a+ib)t
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Complex Roots-III
Solution

Complex solutions:

y1(t) = e(a+ib)t = eat(cos bt + i sin bt)

y2(t) = e(a−ib)t = eat(cos bt − i sin bt)

are not nice to use to solve “real” problems. We can take linear
combinations of these:

y1(t) + y2(t)

2
= eat cos bt

y1(t)− y2(t)

2i
= eat sin bt

(like a change of basis). Thus, the general solution of the complex
root case can be written

y(t) = c1e
at cos bt + c2e

at sin bt
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Complex Roots-IV
Example 1

Solve the IVP

y ′′ + 2y ′ + 5y = 0 with y(0) = 1, y ′(0) = −1
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Complex Roots-V
Example 2

Solve the IVP

y ′′ + 9y = 0 with y(0) = 0, y ′(0) = 3
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Complex Roots-VI
Large Time Qualitative Behaviour

r1,2 = a± ib

y(t) = c1e
at cos bt + c2e

at sin bt

• a < 0 exponentially decaying periodic oscillation.

• a = 0 sustained periodic oscillation.

• a > 0 exponentially growing periodic oscillation.
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Inhomogeneous Problems

Consider linear, second order constant coefficient problems with
nonzero right hand sides (external forcing):

A
d2y

dt2
+ B

dy

dt
+ Cy = g(t)

where g(t) is given. Remember that the general solution y(t) can
be written as

y(t) = yp(t) + yc(t)

where yp(t) is any particular solution of the equation and yc(t) is
the general solution of the homogeneous (complementary)
equation, which we learned how to find in the last section.
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Inhomogeneous Problems-II
Method of Undetermined Coefficients

A
d2y

dt2
+ B

dy

dt
+ Cy = g(t)

If g(t) has one of the following forms, the Method of
Undetermined Coefficients can be used to find the particular
solution:

g(t) is a polynomial in t of order n: take yp(t) to also be a
polynomial in t of order n.

g(t) = sin ωt or g(t) = cos ωt: take

yp(t) = a sin ωt + b cos ωt.

g(t) = ebt : take
yp(t) = aebt .
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Inhomogeneous Problems-III
Method of Undetermined Coefficients (cont.)

combinations: If the RHS is an additive or multiplicative
combination of the forms above, take yp to be the
additive or multiplicative combination of the
correpsonding trial functions above. Additive
combinations can be solved for separately.

special case (resonance): If any one of the terms in the form for
the particular solution above is in the homogeneous
solution, multiply the form of yp(t) above by t until
this is no longer true.

solving for the coefficients: Insert the form of yp(t) into the
differential equation and match functions of t to get
a linear system for the undetermined coefficients in
yp(t). After the coefficients are determined, then
(and only then) find the complete solution
y = yo + yp using the initial data.



Lecture 14 Lecture 15 Lecture 16 Lecture 17

Examples
Example 1

Find a particular solution of

y ′′ − 3y ′ − 4y = 2 sin t
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Examples-II
Example 2

Find a particular solution of

y ′′ − 3y ′ − 4y = te2t
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Examples-III
Example 3

Find a particular solution of

y ′′ − 3y ′ − 4y = te2t + 2 sin t
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Examples-IV
Example 4

Find the general solution of

y ′′ + 5y ′ + 4y = e−4t
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Examples-V
Example 5

Find the solution of the IVP

y ′′ + 4y ′ + 4y = e−2t with y(0) = 0 and y ′(0) = 0
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Examples-VI
Example 5 (cont.)
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Examples-VII
Example 6

Find the solution of the IVP

y ′′ + 4y = sinωt with y(0) = 1 and y ′(0) = 0

as a function of ω and t. For what values of ω does the IVP have
solutions that become unbounded as t →∞?
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Examples-VIII
Example 6 (cont.)
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Method of Reduction of Order
Set-up

We are considering now non-homogeneous problems for linear
equations that are not necessarily constant coefficient:

d2y

dt2
+ p(t)

dy

dt
+ q(t)y = g(t)

where p(t), q(t), and g(t) are given functions.

• Suppose you know one (nozero) solution y1(t) of the
homogeneous problem (given or guessed).

• The Method of Reduction of Order will find the general
solution of the non-homogeneous problem.

• By setting g ≡ 0 you can use the method to find a second
homogeneous solution.
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Method of Reduction of Order-II
Procedure

The method results in a formula, but not one that you will want to
memorize. You should learn the procedure we’ll work through
below. The method starts by looking for a solution to the problem
of the form

y(t) = u(t)y1(t)

where u is to be determined. It is called the Method of Reduction
of Order because it will be shown that u′ solves a linear first order
equation.
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Method of Reduction of Order-III
Procedure (cont.)
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Method of Reduction of Order-IV
Procedure (cont.)
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Method of Reduction of Order-V
Procedure (cont.)
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Examples
Example 1

y ′′ − 6y ′ + 9y = 0

has a homogeneous solution y1(t) = e3t . Use the Method of
Reduction of Order to find a second homogeneous solution.
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Examples-II
Example 2

Find the general solution of

y ′′ + y = sin t

given that y1(t) = sin t is a solution of the homogeneous problem.
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Examples-III
Example 2 (cont.)
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Examples-IV
Example 3

Find the general solution of

t2y ′′ − 2ty ′ + 2y = 4t2

given that y1(t) = t is a solution of the homogeneous problem.
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Examples-V
Example 3 (cont.)
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Examples-VI
Example 4

Consider the equation

t2y ′′ − 2y = 3t2 − 1

1. Show that the homogeneous equation has a solution of the
form y = tn (n to be determined).

2. Find the general solution.
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Examples-VII
Example 4 (cont.)
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Examples-VIII
Example 4 (cont.)
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