Lecture 15 00 0000000 000000 Lecture 16 000 00000000 Lecture 17 00000 00000000

Mech 221 Mathematics Component Differential Equations

Brian Wetton

www.math.ubc.ca/~wetton

Lectures 14-17

Lecture 15 00 0000000 000000 Lecture 16 000 00000000 Lecture 17 00000 00000000

Outline

Lecture 14

Second Order Linear DE Applications General Discussion Some Theory

Lecture 15

Homogeneous Linear Constant Coefficient Equations Real Roots Complex Roots

Lecture 16

Inhomogeneous Problems Examples

Lecture 17

Method of Reduction of Order Examples

Lecture 15 00 0000000 000000 Lecture 16 000 00000000 Lecture 17 00000 00000000

Outline

Lecture 14

Second Order Linear DE Applications General Discussion Some Theory

Lecture 15

Homogeneous Linear Constant Coefficient Equations Real Roots Complex Roots

Lecture 16

Inhomogeneous Problems Examples

Lecture 17

Method of Reduction of Order Examples

Lecture 16 000 00000000 Lecture 17 00000 00000000

Second Order DE Applications

General Linear Second Order DE

$$\frac{d^2y}{dt^2} + p(t)\frac{dy}{dt} + q(t)y = g(t)$$

where p(t), q(t), and g(t) are given functions.

In particular, we will look (again) at a simpler class of linear equations where the coefficients are constants:

$$A\frac{d^2y}{dt^2} + B\frac{dy}{dt} + Cy = g(t)$$

 $(A \neq 0)$. Even these simpler DEs occur in many applications.

Lecture 16 000 00000000 Lecture 17 00000 00000000

Second Order DE Applications-II

Applications

Damped spring systems:

$$m\frac{d^2x}{dt^2} + \beta\frac{dx}{dt} + kx = f(t)$$

Small oscillations of a pendulum:

$$mL^{2}\frac{d^{2}\theta}{dt^{2}}+cL\frac{d\theta}{dt}+mgL\theta=F(t)$$

Lecture 16 000 00000000 Lecture 17 00000 00000000

Second Order DE Applications-III Applications (cont.)

LRC series circuits:

$$L\frac{d^2Q}{dt^2} + R\frac{dQ}{dt} + \frac{1}{C}Q = E(t)$$

Tortional motion of a weight on a twisted shaft:

$$Irac{d^2 heta}{dt^2} + crac{d heta}{dt} + k heta = T(t)$$

Lecture 16 000 00000000 Lecture 17 00000 00000000

Second Order DE Applications-IV Applications (cont.)

Combined diffusion, convection and reaction of a chemical in a permeable channel.

$$D\frac{d^2a}{dx^2} - V\frac{da}{dx} - ka - s(x) = 0$$

Lecture 16 000 00000000 Lecture 17 00000 00000000

General Discussion

The second order linear problem

$$\frac{d^2y}{dt^2} + p(t)\frac{dy}{dt} + q(t)y = g(t)$$

must also have initial data a and b specified:

$$y(t_0) = a$$

 $y'(t_0) = b$

The DE and initial data together make an Initial Value Problem (IVP).

Lecture 16 000 00000000 Lecture 17 00000 00000000

General Discussion-II

$$\frac{d^2y}{dt^2} + p(t)\frac{dy}{dt} + q(t)y = g(t)$$

with $y(t_0)$ and $y'(t_0)$ given.

- Q: Why two pieces of data?
 - 1. To solve the problem for y you have to "integrate" twice.
 - 2. If y were a position then the DE gives the acceleration. To specify position given acceleration you need to know the initial position and velocity.

Theory: The IVP above has a unique solution defined in an interval around t_0 up to values of t (if any) where p, q or g have singularities.

Lecture 16 000 00000000 Lecture 17 00000 00000000

General Discussion-III

Superposition

If y_1 and y_2 solve the linear problems below (same DE, different RHS):

$$\frac{d^2 y_1}{dt^2} + p(t) \frac{dy_1}{dt} + q(t) y_1 = g_1(t)$$

$$\frac{d^2 y_2}{dt^2} + p(t) \frac{dy_2}{dt} + q(t) y_2 = g_2(t)$$

Then the linear combination $w = c_1y_1 + c_2y_2$ solves

$$\frac{d^2w}{dt^2} + p(t)\frac{w}{dt} + q(t)w = c_1g_1(t) + c_2g_2(t)$$

(same DE, linear combination of the RHS).

In particular, linear combinations of complementary (homogeneous) solutions (with zero RHS) are also complementary solutions. We could say that complementary solutions form a lineaper subspace of functions.

Lecture 16 000 00000000 Lecture 17 00000 00000000

General Discussion-IV

Complementary and Particular Solutions

If y_1 and y_2 solve the same linear problem (same DE, same RHS):

$$\frac{d^2 y_1}{dt^2} + p(t) \frac{dy_1}{dt} + q(t) y_1 = g(t)$$

$$\frac{d^2 y_2}{dt^2} + p(t) \frac{dy_2}{dt} + q(t) y_2 = g(t)$$

Then their difference $w = y_1 - y_2$ solves

$$\frac{d^2w}{dt^2} + p(t)\frac{w}{dt} + q(t)w = 0$$

This is the complementary (homogeneous) problem. This shows that any solution y of

$$\frac{d^2y}{dt^2} + p(t)\frac{dy}{dt} + q(t)y = g(t)$$

can be written as

$$y = y_c + y_p$$

Lecture 17 00000 00000000

Some Theory

Fundamental Solutions

Consider the homogeneous equation:

$$\frac{d^2y}{dt^2} + p(t)\frac{dy}{dt} + q(t)y = 0$$

Let

- y_1 be a solution with $y_1(0) = 1$, $y'_1(0) = 0$.
- y_2 be a solution with $y_1(0) = 1$, $y'_1(0) = 0$.

Now, $y = ay_1 + by_2$ solves the homogeneous problem above and satisfies the initial conditions:

$$y(0) = a$$

$$y'(0) = b$$

We have shown that the space of homogeneous solutions is two dimensional.

Lecture 16 000 00000000 Lecture 17 00000 00000000

Some Theory-II Wronskian

Q: Can the fundamental solutions solve the homogeneous IVP specified at other times?

$$\begin{array}{rcl} y(t_0) &=& a\\ y'(t_0) &=& b \end{array}$$

Let's see. Try $c_1y_1 + c_2y_2$ in these initial conditions.

Lecture 16 000 00000000 Lecture 17 00000 00000000

Some Theory-III Wronskian (cont.)

 $W(t) = y_1 y_2' - y_2 y_1'$

We know that W(0) = 1. We want to show that $W \neq 0$ for other *t*.

Lecture 15 00 0000000 000000 Lecture 16 000 00000000 Lecture 17 00000 00000000

Some Theory-IV

Wronskian (cont.)

Lecture 16 000 00000000 Lecture 17 00000 00000000

Some Theory-V Wronskian (cont.)

In fact, if W = 0 at any value of t then y_1 and y_2 must be the same function (possibly multiplied by a constant).

Lecture 16 000 00000000 Lecture 17 00000 00000000

Some Theory-VI

Wronskian (cont.)

Lecture 16 000 00000000 Lecture 17 00000 00000000

Some Theory-VII

$$\frac{d^2y}{dt^2} + p(t)\frac{dy}{dt} + q(t)y = 0$$

- Look for two different solutions y_1 and y_2 .
- The general solution is $c_1y_1 + c_2y_2$.
- Any initial conditions at any value of t can be matched by this general solution.

Lecture 15

Lecture 16 000 00000000 Lecture 17 00000 00000000

Outline

Lecture 14

Second Order Linear DE Applications General Discussion Some Theory

Lecture 15

Homogeneous Linear Constant Coefficient Equations Real Roots Complex Roots

Lecture 16

Inhomogeneous Problems Examples

Lecture 17

Method of Reduction of Order Examples

Lecture 15 • 0 • 0 00000 • 0 00000 • 0 00000 Lecture 16 000 00000000 Lecture 17 00000 00000000

Homogeneous Linear Constant Coefficient Equations

$$A\frac{d^2y}{dt^2} + B\frac{dy}{dt} + Cy = 0$$

 $(A \neq 0)$. From the discussion last lecture, we expect 2 different solutions to this problem. First order linear, constant coefficient, homogeneous problems had exponential solutions, so let's look for exponential solutions here also:

$$y = e^{rt}$$

Lecture 15 00 000000 000000 Lecture 16 000 00000000 Lecture 17 00000 00000000

Homogeneous Linear Constant Coefficient Equations-II Auxilliary Equation

The auxilliary (characteristic) equation

$$Ar^2 + Br + C = 0$$

with solutions

$$r = r_{1,2} = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

Three cases:

- Two distinct real roots if $B^2 4AC > 0$.
- A single (repeated) real root if $B^2 4AC = 0$.
- Distinct complex conjugate roots if $B^2 4AC < 0$.

Lecture 15 00 0000000 000000 Lecture 16 000 00000000 Lecture 17 00000 00000000

Real Roots Case of Two Distinct Real Roots

$$A\frac{d^2y}{dt^2} + B\frac{dy}{dt} + Cy = 0$$

Auxilliary Equation

$$Ar^2 + Br + C = 0$$

has two real roots r_1 and r_2 . Thus, $y_1(t) = e^{r_1 t}$ and $y_2(t) = e^{r_2 t}$ are (different) solutions so the general solution is

$$y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$

Lecture 16 000 00000000 Lecture 17 00000 00000000

Real Roots-II Example 1

Find the general solution of

$$y''-2y'-2y=0$$

Lecture 16 000 00000000 Lecture 17 00000 00000000

Real Roots-III Example 2

Solve the IVP

$$y'' + 3y' + 2y = 0$$
 with $y(0) = 1$, $y'(0) = -1$

Lecture 15 00 0000000 000000 Lecture 16 000 00000000 Lecture 17 00000 00000000

Real Roots-IV

Real Repeated Root

$$r = r_{1,2} = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

In the case of a repeated root, the root is r = -B/(2A) and $B^2 - 4AC = 0$. One homogeneous solution is

$$y_1(t)=e^{rt}$$

We need another solution. It can be shown that in this case,

$$y_2(t)=te^{rt}.$$

Lecture 15

Lecture 16 000 00000000 Lecture 17 00000 00000000

Real Roots-V Real Repeated Root (cont.)

Lecture 16 000 00000000 Lecture 17 00000 00000000

Real Roots-VI Example 3

Solve the IVP

$$y'' - 6y' + 9y = 0$$
 with $y(0) = -1$, $y'(0) = 1$

Lecture 15 00 000000 000000 Lecture 16 000 00000000 Lecture 17 00000 00000000

Real Roots-VI

Large Time Qualitative Behaviour

In general we could have any combination of real exponents:

- If $0 < r_1 \le r_2$ then the solution grows exponentially and at large times the term $c_2e^{r_2t}$ (or c_2te^{rt} for repeated root) will dominate at large times.
- If r₁ ≤ r₂ < 0 then the solution decays exponentially to zero. The first term decays faster and so the solution will be dominated by the term c₂e^{r₂t} (or c₂te^{rt} for repeated root)
- If $r_1 < 0 < r_2$ then in general the solution grows exponentially and will be dominated by $c_2 e^{r_2 t}$ at large times. However, for initial conditions that give $c_2 = 0$ exactly, the solution will decay exponentially. However, in applications, noise will always generate the exponentially growing behaviour.

Lecture 16 000 00000000 Lecture 17 00000 00000000

Complex Roots

$$A\frac{d^2y}{dt^2} + B\frac{dy}{dt} + Cy = 0$$

Auxilliary Equation

$$Ar^2 + Br + C = 0$$

Complex roots occur when $B^2 - 4AC < 0$, then

$$r_1 = a + ib$$

 $r_2 = a - ib$

where

$$a = -\frac{B}{2A}$$
$$b = \frac{\sqrt{4AC - B^2}}{2A}$$

Lecture 15

.

Lecture 16 000 00000000 Lecture 17 00000 00000000

Complex Roots-II

Complex Exponentials

Our solutions are

$$egin{array}{rcl} y_1(t)&=&e^{(a+ib)t}\ y_2(t)&=&e^{(a-ib)t} \end{array}$$

We need to make sense of the complex exponential to proceed:

$$e^{a+ib} = e^a(\cos b + i \sin b)$$

(definition). This satisfies all the properties of the "real" exponential

•
$$e^{a_1+b_1i}e^{a_2+b_2i} = e^{(a_1+a_2)+(b_1+b_2)i}$$

• This justifies our use of the complex exponential solution:

$$\frac{d}{dt}e^{(a+ib)t} = (a+ib)e^{(a+ib)t}$$

Lecture 16 000 00000000 Lecture 17 00000 00000000

Complex Roots-III

Complex solutions:

$$y_1(t) = e^{(a+ib)t} = e^{at}(\cos bt + i\sin bt)$$

 $y_2(t) = e^{(a-ib)t} = e^{at}(\cos bt - i\sin bt)$

are not nice to use to solve "real" problems. We can take linear combinations of these:

$$\frac{y_1(t) + y_2(t)}{2} = e^{at} \cos bt$$
$$\frac{y_1(t) - y_2(t)}{2i} = e^{at} \sin bt$$

(like a change of basis). Thus, the general solution of the complex root case can be written

$$y(t) = c_1 e^{at} \cos bt + c_2 e^{at} \sin bt$$

Lecture 15

Lecture 16 000 00000000 Lecture 17 00000 00000000

Complex Roots-IV Example 1

Solve the IVP

$$y'' + 2y' + 5y = 0$$
 with $y(0) = 1$, $y'(0) = -1$

Lecture 15

Lecture 16 000 00000000 Lecture 17 00000 00000000

Complex Roots-V

Example 2

Solve the IVP

$$y'' + 9y = 0$$
 with $y(0) = 0$, $y'(0) = 3$

Lecture 15

Lecture 16 000 00000000 Lecture 17 00000 00000000

Complex Roots-VI Large Time Qualitative Behaviour

$$r_{1,2} = a \pm ib$$

 $y(t) = c_1 e^{at} \cos bt + c_2 e^{at} \sin bt$

- *a* < 0 exponentially decaying periodic oscillation.
- a = 0 sustained periodic oscillation.
- a > 0 exponentially growing periodic oscillation.

Lecture 15 00 0000000 000000 Lecture 16

Lecture 17 00000 00000000

Outline

Lecture 14

Second Order Linear DE Applications General Discussion Some Theory

Lecture 15

Homogeneous Linear Constant Coefficient Equations Real Roots Complex Roots

Lecture 16

Inhomogeneous Problems Examples

Lecture 17

Method of Reduction of Order Examples

Lecture 15 00 0000000 000000 Lecture 16 •00 •0000000 Lecture 17 00000 00000000

Inhomogeneous Problems

Consider linear, second order constant coefficient problems with nonzero right hand sides (external forcing):

$$A\frac{d^2y}{dt^2} + B\frac{dy}{dt} + Cy = g(t)$$

where g(t) is given. Remember that the general solution y(t) can be written as

$$y(t) = y_p(t) + y_c(t)$$

where $y_p(t)$ is any particular solution of the equation and $y_c(t)$ is the general solution of the homogeneous (complementary) equation, which we learned how to find in the last section.

Lecture 15 00 0000000 000000 Lecture 16 000 Lecture 17 00000 00000000

Inhomogeneous Problems-II

Method of Undetermined Coefficients

$$A\frac{d^2y}{dt^2} + B\frac{dy}{dt} + Cy = g(t)$$

If g(t) has one of the following forms, the Method of Undetermined Coefficients can be used to find the particular solution:

g(t) is a polynomial in t of order n: take $y_p(t)$ to also be a polynomial in t of order n.

 $g(t) = \sin \omega t$ or $g(t) = \cos \omega t$: take

$$y_p(t) = a\sin\omega t + b\cos\omega t.$$

 $g(t) = e^{bt}$: take

$$y_p(t) = ae^{bt}.$$

Lecture 15 00 0000000 000000 Lecture 16

Lecture 17 00000 00000000

Inhomogeneous Problems-III Method of Undetermined Coefficients (cont.) combinations: If the RHS is an additive or multiplicative combination of the forms above, take y_p to be the additive or multiplicative combination of the correpsonding trial functions above. Additive combinations can be solved for separately. special case (resonance): If any one of the terms in the form for the particular solution above is in the homogeneous solution, multiply the form of $y_p(t)$ above by t until this is no longer true. solving for the coefficients: Insert the form of $y_p(t)$ into the

lying for the coefficients: Insert the form of $y_p(t)$ into the differential equation and match functions of t to get a linear system for the undetermined coefficients in $y_p(t)$. After the coefficients are determined, then (and only then) find the complete solution $y = y_o + y_p$ using the initial data.

Lecture 16 000 00000000 Lecture 17 00000 00000000

Examples Example 1

Find a particular solution of

$$y''-3y'-4y=2\sin t$$

Lecture 16 000 00000000 Lecture 17 00000 00000000

Examples-II Example 2

Find a particular solution of

$$y''-3y'-4y=te^{2t}$$

Lecture 16 000 0000000 Lecture 17 00000 00000000

Examples-III Example 3

Find a particular solution of

$$y'' - 3y' - 4y = te^{2t} + 2\sin t$$

Lecture 16

Lecture 17 00000 00000000

Examples-IV Example 4

Find the general solution of

$$y'' + 5y' + 4y = e^{-4t}$$

Lecture 16 000 00000000 Lecture 17 00000 00000000

Examples-V Example 5

Find the solution of the IVP

$$y'' + 4y' + 4y = e^{-2t}$$
 with $y(0) = 0$ and $y'(0) = 0$

Lecture 15 00 0000000 000000 Lecture 16

Lecture 17 00000 00000000

Examples-VI Example 5 (cont.)

Lecture 16 000 00000000 Lecture 17 00000 00000000

Examples-VII Example 6

Find the solution of the IVP

$$y^{\prime\prime}+4y=\sin\omega t~$$
 with $y(0)=1$ and $y^{\prime}(0)=0$

as a function of ω and t. For what values of ω does the IVP have solutions that become unbounded as $t \to \infty$?

Lecture 15 00 0000000 000000 Lecture 16

Lecture 17 00000 00000000

Examples-VIII Example 6 (cont.)

Lecture 15 00 0000000 000000 Lecture 16 000 00000000 Lecture 17

Outline

Lecture 14

Second Order Linear DE Applications General Discussion Some Theory

Lecture 15

Homogeneous Linear Constant Coefficient Equations Real Roots Complex Roots

Lecture 16

Inhomogeneous Problems Examples

Lecture 17 Method of Reduction of Order Examples

Lecture 15 00 0000000 000000 Lecture 16 000 00000000 Lecture 17 •0000 •00000000

Method of Reduction of Order Set-up

We are considering now non-homogeneous problems for linear equations that are not necessarily constant coefficient:

$$\frac{d^2y}{dt^2} + p(t)\frac{dy}{dt} + q(t)y = g(t)$$

where p(t), q(t), and g(t) are given functions.

- Suppose you know one (nozero) solution $y_1(t)$ of the *homogeneous* problem (given or guessed).
- The Method of Reduction of Order will find the general solution of the non-homogeneous problem.
- By setting $g \equiv 0$ you can use the method to find a second homogeneous solution.

Lecture 15 00 0000000 000000 Lecture 16 000 00000000 Lecture 17 00000 00000000

Method of Reduction of Order-II Procedure

The method results in a formula, but not one that you will want to memorize. You should learn the procedure we'll work through below. The method starts by looking for a solution to the problem of the form

$$y(t) = u(t)y_1(t)$$

where u is to be determined. It is called the Method of Reduction of Order because it will be shown that u' solves a linear first order equation.

Lecture 15 00 0000000 000000 Lecture 16 000 00000000 Lecture 17 00000 00000000

Method of Reduction of Order-III Procedure (cont.)

MECH

Lecture 15 00 0000000 000000 Lecture 16 000 00000000

Method of Reduction of Order-IV Procedure (cont.)

MECH

Lecture 15 00 0000000 000000 Lecture 16 000 00000000 Lecture 17

Method of Reduction of Order-V Procedure (cont.)

MECH

Lecture 15 00 0000000 000000 Lecture 16 000 00000000 Lecture 17

Examples Example 1

$$y''-6y'+9y=0$$

has a homogeneous solution $y_1(t) = e^{3t}$. Use the Method of Reduction of Order to find a second homogeneous solution.

Lecture 17

Examples-II Example 2

Find the general solution of

$$y'' + y = \sin t$$

given that $y_1(t) = \sin t$ is a solution of the homogeneous problem.

Lecture 15 00 0000000 000000 Lecture 16 000 00000000 Lecture 17

Examples-III Example 2 (cont.)

Lecture 16 000 00000000 Lecture 17

Examples-IV Example 3

Find the general solution of

$$t^2y'' - 2ty' + 2y = 4t^2$$

given that $y_1(t) = t$ is a solution of the homogeneous problem.

Lecture 15 00 0000000 000000 Lecture 16 000 00000000 Lecture 17

Examples-V Example 3 (cont.)

Lecture 16 000 00000000 Lecture 17

Examples-VI Example 4

Consider the equation

$$t^2y'' - 2y = 3t^2 - 1$$

- 1. Show that the homogeneous equation has a solution of the form $y = t^n$ (*n* to be determined).
- 2. Find the general solution.

Lecture 15 00 0000000 000000 Lecture 16 000 00000000 Lecture 17

Examples-VII Example 4 (cont.)

Lecture 15 00 0000000 000000 Lecture 16 000 00000000 Lecture 17

Examples-VIII Example 4 (cont.)

