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Numerical Approximation of Differential Equations

Consider the first order IVP for y(t):

dy

dt
= f (t, y)

with y(0) = y0 given

Let the exact solution of the problem be y(t) = φ(t).

Let T be a final time of interest. Divide [0,T ] into N equal
subdivisions of length h = T/N. The ends of the subintervals are
tk = kh for k = 0 . . .N. We want to find approximate solutions yk

at these values of t:
yk ≈ φ(kh)
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Numerical Approximation of Differential Equations
Diagram
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Numerical Approximation of Differential Equations
Notes

• y0 is given by the initial data.

• We need a method to find the other yk (the numerical
approximation method).

• The method should be efficient (as few computations as
possible to get the desired accuracy in the approximate
solutions).

• We expect that as N →∞ (h → 0) the solutions will become
more accurate (convergence).
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Euler’s Method
Derivation

Consider
dy

dt
= f (t, y)

On the grid of points we are tring to compute, we could
approximate dy

dt using the forward difference formula:

dy

dt
(kh) ≈ yk+1 − yk

h

Thus, the DE reads approximately

yk+1 − yk

h
≈ f (kh, yk)

Rewriting, multiplying by h and moving all yk terms to the left
gives

yk+1 = yk + hf (kh, yk)
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Euler’s Method-II
Method

yk = yk−1 + hf ((k − 1)h, yk−1)

Since y0 is known (initial data) this formula can be used to
determine y1. Then y1 can be used to determine y2, etc.

• All yk for k > 0 can be determined iteratively

• This is an efficient process

• This technique is known as Euler’s Method
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Euler’s Method-III
Example 1

Approximate the solution of

y ′ = y

with y(0) = 1 at T = 0.1 using one step of Euler’s Method.
Compare to the exact solution.
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Euler’s Method-IV
Example 2

Approximate the solution of

y ′ =
√

y2 + t2

with y(0) = 1 at T = 0.2 using 2 steps of Euler’s Method with
step size h = 0.1.
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Euler’s Method-V
Accuracy Study-A

Consider
y ′ = y

with y(0) = 1. Do one step of Euler’s Method for different values
of h and compare to the exact solution. Is there a pattern to the
one-step (local) errors?
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Euler’s Method-VI
Accuracy Study-A (cont.)
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Euler’s Method-VII
Accuracy Study-B

Consider
y ′ = y

with y(0) = 1. Compute using Euler’s Method to T = 1 using
different values of h and compare to the exact solution. Is there a
pattern to the fixed-time (global) errors?
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Euler’s Method-VIII
Accuracy Study-B (cont.)
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Euler’s Method-IX
Accuracy Summary

• The local error (error after one step) is O(h2), that is,
bounded by a constant times h2.

• The global error (error at a fixed time T ) is O(h), that is,
bounded by a constant times h.

• Can prove these results are true when computing smooth
solutions.

• Thus, Euler’s Method converges (gets closer and closer to the
exact solution as h → 0).
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Euler’s Method for a System

There is nothing special about scalar equations for the use of
Euler’s method, or the higher order methods we will consider in a
couple of lectures. If y had n components and f (t, y) was a vector
function with n components, and the vector y(0) = y

0
were given,

solutions of
y ′ = f (t, y)

can be approximated by

y
k

= y
k−1

+ hf ((k − 1)h, y
k−1

)

Start with y
0

= y(0), the resulting numerical approximation is
y

k
≈ φ(kh).
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Euler’s Method for a System-II
Example

Consider the DE system

dx

dt
= x + y + t

dy

dt
= x − y

with initial data x(0) = 1, y(0) = 0. Use Euler’s method with 2
steps of size h = 0.1 to approximate the solution at t=0.2 (both
x(0.2) and y(0.2).
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Euler’s Method for a System-III
Example (cont.)
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Problems with Numerical Methods
An Example

Consider the IVP:
y ′ = y2

with y(0) = 1. In an earlier lecture we found the solution

y(t) =
1

1− t

Note that the solution does not exist past t = 1.
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Problems with Numerical Methods-II
An Example (cont.)

Approximate
y ′ = y2

with y(0) = 1 using 2 steps of Euler’s Method with h = 1.
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Problems with Numerical Methods-III
An Example (cont.)

Approximations of the solution y(2) with decreasing h are shown
below:

h y(2) approx.

1 6
1/2 24.5
1/4 3202

The approximations of y(2) exists for all h and →∞ as h → 0, but
that is the only indication that the solution does not exist at t = 2.
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Problems with Numerical Methods
Summary

• The numerical method never gives the exact answer.

• In all practical cases, you do not know the exact solution, so
the numerical solution must be used to try and assess its
accuracy.

• As the last example shows, this can be difficult.
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Problems with Euler’s Method
An Example

Consider
y ′ = −100y

with y(0) = 1. The exact y(1) = e−100, very small. Use the trick
from the last lecture to quickly compute approximations of y(1)
using

1. h = 0.1

2. h = 0.01

3. h = 0.001
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Problems with Euler’s Method
An Example (cont.)
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Problems with Euler’s Method
Summary

• Euler’s Method does not accurately compute stiff problems
(problems with large decay rates) unless the time step is very
small (inefficient).

• Euler’s Method is not very accurate (inefficient).

• Euler’s Method is only for first order equations
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Higher Order Differential Equations
Example 1

Consider the second order, homogeneous, linear differential
equation for y(t):

y ′′ + a(t)y ′ + b(t)y = 0

with the functions a(t), b(t), and the Initial Values y(0) and y ′(0)
given. We’ll look at second order problems in a few lectures.

Q: What would we do if we wanted to solve this problem
numerically?

A: Convert to a two-component first order system, then apply
Euler’s Method to the system
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Higher Order Differential Equations-II
Example 1 (cont.)

Convert
y ′′ + a(t)y ′ + b(t)y = 0

to a first order system.
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Higher Order Differential Equations-III
Example 2

Convert the third order equation for x(s) below into a first order
system:

d3x

ds3
+ es dx

ds
+ x2 = 0

Do not try to solve the system.
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Higher Order Differential Equations-IV
Summary of Conversion to First Order System

• If the equation has derivatives of order n, convert it into a
system with n components.

• The n components are the original function and its derivatives
up to order n − 1.

• The derivatives of the first n − 1 components are matched
simply to the values they should have.

• The derivative of the last component is determined by the
original equation.

• Systems of higher order equations can also be turned into
(larger) first order systems in the same way.
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Higher Order Differential Equations-V
Example 3

Consider the differential equation for x(t):

ẍ + x2 = t

with x(0) = 1 and ẋ = 2.

1. Write the equation as first order system.

2. Apply two steps of Euler’s Method with step h = 0.1 to
estimate x(0.2) and ẋ(0.2).



Lecture 10 Lecture 11 Lecture 12 Lecture 14

Higher Order Differential Equations-VI
Example 3 (cont.)
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Richardson Extrapolation of Euler’s Method
Formula

Suppose we compute approximations of y(T ) with Euler’s Method
with decreasing step sizes h. Denote the values by Yh. We know

Yh ≈ y(T ) + Ch

for some constant C (first order convergence).

Going back to the formula from a few lectures ago, or reproducing
the algebra, we can see that

2Yh − Y2h

gives a better approximation of y(T ).
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Richardson Extrapolation of Euler’s Method-II
Example

Apply Richardson Extrapolation to the Euler Method calculation of
y(1) = e1 as the solution of

y ′ = y with y(0) = 1

h Euler (error)

1/2 2.25 (0.4683)
1/4 2.441406 (0.2769)
1/8 2.565785 (0.1525)
1/16 2.637928 (0.0804)
1/32 2.676990 (0.0413)

Unfortunately, Richardson extrapolation is not very efficient.
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Other Second Order Methods
Improved Euler Method

Improved Euler Method:

1. Start with tk and yk ≈ φ(tk)

2. Compute the stages:

K1 = f (tk , yk)

K2 = f (tk + h, yk + hK1)

3. Compute yk+1:

yk+1 = yk +
h

2
(K1 + K2)

IE has local errors O(h3) and global errors O(h2).
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Other Second Order Methods-II
Improved Euler Method Example

Use one step of Improved Euler to approximate y(0.2) where y(t)
solves

y ′ = 3− t + y

with y(0) = 1.



Lecture 10 Lecture 11 Lecture 12 Lecture 14

Other Second Order Methods-III
Modified Euler Method

Improved Euler Method:

1. Start with tk and yk ≈ φ(tk)

2. Compute the stages:

K1 = f (tk , yk)

K2 = f (tk +
h

2
, yk +

h

2
K1)

3. Compute yk+1:
yk+1 = yk + hK2

ME also has local errors O(h3) and global errors O(h2). ME and
IE have similar performance.
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Other Second Order Methods-IV
Modified Euler Method Example

Use one step of Modified Euler to approximate y(0.2) where y(t)
solves

y ′ = 3− t + y

with y(0) = 1.
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Other Second Order Methods-V
Global Accuracy Test

Apply original Euler, IE, and ME to

y ′ = y with y(0) = 1

h Euler error IE/ME error

1/2 0.4683 0.0777
1/4 0.2769 0.0234
1/8 0.1525 0.0064
1/16 0.0804 0.0017

Example consistent with second order methods having global errors
O(h2).
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Other Second Order Methods-VI
Accuracy Comparison to Euler’s Method

Consider applying Euler’s method to a problem, and one of the
second order methods. An accuracy of ε is required out to time T .
Errors from Euler are given approximately by

C1h = C1T/N

To make the error size ε we need to take

N1 = C1T/ε

(or more) steps. Each step costs one function evaluation.

Similarly, a second order method has errors approximately

C2h
2 = C2T

2/N2

To make the error size ε we need to take

N2 = T
√

C2/ε

(or more) steps. Each step costs two function evaluations.
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Other Second Order Methods-VII
Accuracy Comparison to Euler’s Method (cont.)

The ratio of the amount of work for original Euler to the amount
of work for a second order method is given by

N1

2N2
=

C1

2
√

C2

1√
ε

If high accuracy is needed (ε small), original Euler will always take
more computational work than a second order method.



Lecture 10 Lecture 11 Lecture 12 Lecture 14

Other Second Order Methods-VIII
Discussion

• Second order methods have local errors O(h3) and global
errors O(h2).

• For sufficiently high accuracy requirements, second order
methods are always more efficient than the original first order
Euler Method.

• For most practical applications and accuracy requirements,
fourth order methods are optimal, second order methods are
pretty close.

• These second order methods are in a class of methods for
approximating ODEs called Runge Kutta methods.

• Runge Kutta methods are found by matching Taylor series
expansions in the solutions starting from simple forms that
minimize storage and computational cost per step.
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Fourth Order Methods
Fourth Order Runge Kutta

Fourth order Runge-Kutta method:

1. Start with tk and yk ≈ φ(tk)

2. Compute the stages:

K1 = f (tk , yk)

K2 = f (tk + h/2, yk +
h

2
K1)

K3 = f (tk + h/2, yk +
h

2
K2)

K4 = f (tk + h, yk + hK4)

3. Compute yk+1:

yk+1 = yk +
h

6
(K1 + 2K2 + 2K3 + K4)

RK4 has local errors O(h5) and global errors O(h4).
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Fourth Order Methods-II
Example

Use one step of RK4 to approximate y(0.2) where y(t) solves

y ′ = 3− t + y

with y(0) = 1.
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Fourth Order Methods-III
Example (cont.)
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Stiff Problems and Implicit Methods
Example of Stiff ODE

Consider the problem

y ′ = −λy with y(0) = 1

where λ is large (think vector problem with a large, negative real
eigenvalue).

We already know that if λ is large, then h must be very small in
order for original Euler (Forward Euler) to have reasonable
approximate solutions. “Reasonable” has two definitions:

A: yk → 0 as k →∞.

B: yk → 0 as k →∞ and yk > 0 for all k.
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Stiff Problems and Implicit Methods-II
Stable Time Steps

Determine the restriction on h that makes the problem

y ′ = −λy with y(0) = 1

reasonable by the two definitions. Use the trick we’ve used before
on these constant coefficient problems to simplify the form of yk .
The resulting restriction on h is called a stability restriction. All
the methods we have considered so far have similar time step
restrictions.
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Stiff Problems and Implicit Methods-III
Stable Time Steps (cont.)
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Stiff Problems and Implicit Methods-IV
Backward Euler Method

dy

dt
= f (t, y)

Approximate dy
dt using the backward difference formula:

dy

dt
(kh) ≈ yk − yk−1

h

Thus, the DE reads approximately

yk − yk−1

h
≈ f (kh, yk)

Rewriting gives
yk − hf (kh, yk) = yk−1

This is an implicit equation for yk given yk−1. In general, it is
solved iteratively using Newton’s method. This method is called
the Backward Euler method. It has global accuracy of first order.
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Stiff Problems and Implicit Methods-V
Use BE on the Stiff ODE

Determine the restriction on h that makes the problem

y ′ = −λy with y(0) = 1

reasonable by the two definitions. You will see that the BE is
stable for any h. Thus, even though BE is more work per time step
(implicit solve) you can use much larger time steps for stiff
problems.



Lecture 10 Lecture 11 Lecture 12 Lecture 14

Stiff Problems and Implicit Methods-VI
Use BE on the Stiff ODE (cont.)
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Stiff Problems and Implicit Methods-VII
Applying BE to an Example

Consider the problem for y(t)

dy

dt
= t + y2 with y(0) = 1

approximate y(0.1) using one step of BE time stepping.
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Adaptive Time Stepping
An Example
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Adaptive Time Stepping-II

If you were trying to compute approximations of the last problem,
you would have to use small h to resolve the solution near t = 0
accurately. But for larger t you could use a larger h for the same
accuracy.
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Adaptive Time Stepping-III
Idea of Adaptive Time Stepping

• Suppose you are using a p’th order method to approximate an
ODE.

• You want the local trunction error to be smaller that ε at each
step.

• You compute one step with ho .

• By magic you determine the error δ you made in the solution
with that step size. (The magic is estimating the error using
different schemes).

• If δ > ε you want to decrease h so the scheme is more
accurate.

• If δ < ε you want to increase h so the scheme is more efficient.

• Safety margins are built into most schemes.
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Adaptive Time Stepping-IV
Idea of Adaptive Time Stepping (cont.)
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MATLAB routines

There are three MATLAB routines that are standard ODE solvers.
All use variable time step strategies based on error approximation.

ODE23: A second order RK scheme with an extra stage that
allows for error estimation.

ODE45: A fourth order RK scheme with an extra stage that
allows for error estimation.

ODE15s: A variable order implicit scheme for stiff problems.
Solves the implicit systems using a Newton-type
method, based on numerically computed derivates.
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The Bad News

No ODE solver is perfect. All of the routines above will “fail” if
applied to the simple problem for x(t)

ẍ + x = 0 with x(0) = 0 and ẋ(0) = 1

(solution x(t) = sin t) and computed for very long times.

ODE23: The approximate solution will grow slowly in time.

ODE45: The approximate solution will decay slowly in time.

ODE15s: The approximate solution will decay slowly in time.

Very specialized (symplectic) schemes for this specific problem will
avoid the growth and decay, but there will still be phase drift in
time. Also, no numerical method can accurately calculate solutions
to chaotic problems for large times.
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