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Course Overview

Last Year:

Math 100: Differential Calculus

Math 101: Integral Calculus

Math 152: Linear Systems

This Term: carry on with two main ideas from last year.

• Numerical Approximation (carrying on from numerical
integration in Math 101). Riemann Sums, Trapezoidal Rule,
Simpson’s Rule.

• Differential Equations (carrying on from DEs in Math 101 and
152). Exponential growth and decay, separable equations,
second order linear constant coefficient equations (auxiliary
equation), method of undetermined coefficients, systems of
linear equations (linear, constant coefficient, diagonalizable).
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Course Overview-II

You need to know how to Do the Math:

1. Convert an Engineering problem to a mathematical one (with
simplifications).

2. Solve the mathematical problem.

3. Relate the mathematical solution to the original Engineering
problem (with appropriate scepticism).

Why? Solving the problem with pencil and paper (and
computations) rather than extensive physical design cycles is faster
and cheaper.
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Integration
Graphical Interpretation

Integral of a function is the
area A under its graph

A =

∫ b

a
f (x)dx

Applications of Integration: average values, volumes, work, arc
length, centre of mass, solving separable DEs.
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Integration-II
New Application

How much heat Q (in J) does
it take to heat up a rock of
mass M from 25◦ C to 1000◦

C?

If the thermal heat capacity c (in J/kg/◦C ) does not depend on
temperature, then

Q = cM(1000− 25)

(makes sense and the units check out).

If the thermal heat capacity c(T ) (in J/kg/◦C ) does depend on
temperature, then

Q = M

∫ 1000

25
c(T )dT .
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Integration-III
New Application (cont.)

Derivation of

Q = M

∫ T1

T0

c(T )dT
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Integration-IV
New Application (cont.)
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Integration-V
Analytic Integration Review

Can you evaluate the following simple integrals?∫ 1

0
sin xdx∫

e−xdx∫
xex2

dx∫
x cos xdx
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Integration-VI
Analytic Integration Example

∫
x cos xdx
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Numerical Integration
Left Riemann Sums

Some integrals cannot be evaluated analytically. Some functions
are only known at a finite array of points (corresponding to
experimental measurements). Use numerical methods.

If the interval [a, b] is divided into N subintervals of length
h = (b − a)/N, we can use the Left Riemann sum approximation

I =

∫ b

a
≈ LN = hf (a) + hf (a + h) + hf (a + 2h) + · · ·+ hf (a− h)
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Numerical Integration
Left Riemann Sums

As N →∞ we know LN → I (definition of the integral). Error
made is

I − LN = − f ′(ξ)

2
(b − a)h

where ξ is a point in [a, b] (that is not known).
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Numerical Integration-II
Trapezoidal Rule

We know from Math 101 we can get more accurate answers using
other numerical integration methods.

I ≈ TN =
h

2
f (a)+hf (a+h)+hf (a+2h)+ · · ·+hf (b−h)+

h

2
f (b)

with error expression

I − TN = − f ′′(ξ)

12
(b − a)h2
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Numerical Integration-III
Simpson’s Rule

N must be even

I ≈ SN =
h

3
f (a) +

4h

3
f (a + h) +

2h

3
f (a + 2h) +

4h

3
f (a + 3h) +

2h

3
f (a + 4h) + · · ·+ 4h

3
f (b − h) +

h

3
f (b)

with error expression

I − SN = − f (4)(ξ)

180
(b − a)h4
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Numerical Integration-IV
Doing the Computations

Take as an example: ∫ 1

0
sin xdx

Work out L4, T4, S4.
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Numerical Integration-V
Doing the Computations (cont.)
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Numerical Integration-VI
Performance of Methods

∫ 1

0
sin xdx = 1− cos(1) ≈ 0.4597

N I − LN I − TN I − SN

2 0.2200 0.0096 1.6 ×10−4

4 0.1076 0.0024 1.0 ×10−5

8 0.0532 0.00060 6.2 ×10−7

16 0.0264 0.00015
32 0.0132 0.00004
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Numerical Integration-VII
Direction

• Where do the error expressions come from?

• How could we work out how to get that accurate method
(Simpson’s rule)? So we can get figure out how to get
accurate numerical methods for other things.
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Taylor Polynomials and Series
Linear Approximation

For x near a we have the linear (tangent line) approximation:

f (x) ≈ f (a) + f ′(a)(x − a)

As an example, take a = 0 and
f (x) = ex to get the linear
approximation

ex ≈ 1 + x



Lecture 1 Lecture 2 Lecture 3 Lecture 4

Taylor Polynomials and Series-II
Quadratic Approximation

A better approximation is the quadratic one

f (x) ≈ f (a) + f ′(a)(x − a) +
f ′′(a)

2
(x − a)2

Note that the values, derivatives and second derivatives of the
function and its approximation are the same at x = a.

Considering a = 0 and
f (x) = ex again we get the
quadratic approximation

ex ≈ 1 + x +
x2

2
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Taylor Polynomials and Series-III
Taylor Quadratic Example

Find the quadratic Taylor approximation of arctan x based at
a = 1.
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Taylor Polynomials and Series-IV
Taylor Polynomial Approximation

Higher order (n) polynomial approximation (Pn(x)) can also be
used:

f (x) ≈ Pn(x) = f (a)+f ′(a)(x−a)+
f ′′(a)

2
(x−a)2+· · ·+ f (n)(a)

n!
(x−a)n

Error formula

f (x)− Pn(x) = Rn(x) =
f (n+1)(ξ)

(n + 1)!
(x − a)n+1

where ξ is a point between a and x (that is not known).
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Taylor Polynomials and Series-V
Taylor Series

In some cases, Pn(x) → f (x) as n →∞. The “infinite” order
polynomial is called a Taylor Series. Some common series are given
below (based at a = 0, they can also be called McLaurin Series):

sin x = x − x3

6
+

x5

5!
− x7

7!
+ · · ·

cos x = 1− x2

2
+

x4

4!
− x6

6!
+ · · ·

ex = 1 + x +
x2

2
+

x3

6
+

x4

4!
+ · · ·

1

1− x
= 1 + x + x2 + x3 + · · · for |x | < 1
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Some Proofs
Rolle’s Theorem

If f is differentiable, f (a) = 0 and f (b) = 0 then there is a point ξ
in (a, b) at which f ′(ξ) = 0.
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Some Proofs-II
Rolle’s Theorem (cont.)
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Some Proofs-III
Error Estimate for Tangent Line Approximation

Show that

f (b)− [f (a) + f ′(a)(b − a)] =
f ′′(ξ)

2
(b − a)2

for some ξ in (a, b).
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Some Proofs-IV
Error Estimate for Tangent Line Approximation (cont.)
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Errors from Numerical Integration
Left Riemann Sums

Consider just one subinterval:

Using a Taylor polynomial and remainder argument, it can be
shown that ∫ a+h

a
f (x)dx − hf (a) =

f ′(ξ)

2
h2

where ξ is in [a, a + h]. Now sum over all subintervals (N
subintervals length h = (b − a)/N):∫ b

a
f (x)dx − LN =

1

2
(f ′(ξ1) + · · · f ′(ξj) + · · · f ′(ξN))h2

where each ξj is in the j’th subinterval [a + (j − 1)h, a + jh].
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Errors from Numerical Integration-II
Left Riemann Sums cont.

We had summed over all subintervals (N subintervals length
h = (b − a)/N):∫ b

a
f (x)dx − LN =

1

2

1

N
(f ′(ξ1) + · · · f ′(ξj) + · · · f ′(ξN))(b − a)h

Note that an average of values of a continuous function on an
interval is attained at a value in the interval (fancy application of
the intermediate value theorem):∫ b

a
f (x)dx − LN =

1

2
f ′(ξ)(b − a)h

Careful consideration of the argument shows that∫ b

a
f (x)dx − LN ≈

h

2

∫ b

a
f ′(x)dx =

h

2
(f (b)− f (a))

Is this a surprise?
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Errors from Numerical Integration-III
Left Riemann Sums cont.

Consider the error expression applied to our example from last time:∫ 1

0
sin xdx

We know that

d

dx
sin x = cos x and | cos x | ≤ 1 on [0,1]

so the error bound is∣∣∣∣∫ 1

0
sin xdx − LN

∣∣∣∣ ≤ 1

2
h =

1

2N

The error estimate is∫ 1

0
sin xdx − LN ≈

h

2
(sin(1)− 0) =

sin(1)

2N

smaller than error bound - check.
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Errors from Numerical Integration-IV
Left Riemann Sums Example

Comparison of errors, error bounds, and theoretical estimates of
the error.

N I − LN Bound Estimate

2 0.2200 0.2500 0.2104
4 0.1076 0.1250 0.1052
8 0.0532 0.0625 0.0526
16 0.0264 0.0313 0.0263
32 0.0132 0.0156 0.0132
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Errors from Numerical Integration-V
Higher Order Methods

Local estimates:∫ a+h

a
f (x)dx − h

2
(f (a) + f (a + h)) = − 1

12
f ′′(ξ)h3

∫ a+2h

a
f (x)dx − h

3
(f (a) + 4f (a + h) + f (a + 2h)) = − 1

180
f (4)(ξ)h5

where ξ is in [a, a + h] (different value in the two expressions).

Technical, but the idea is that if the integration formula is exact
for polynomials of order n, it’s local errors behave like hn+2 and
the total errors like hn+1.

How would you derive a higher order method than Simpson’s Rule?
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Errors from Numerical Integration-VI
Final Discussion

Consider doing numerical integration on∫ 1

0
f (x)dx

where f (x) has the following forms:

f (x) = ex2
(exact integral not known)

f (x) =

{
sin(2x2) for x ≤ 1/

√
2

sin
(

1
2x2

)
for x > 1/

√
2

f (x) =
cos x√

x
(singular integrand)
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Interpolation
Interpolation and Extrapolation

Suppose you know the value of f (a) and f (b) and wanted to
estimate the value of f (c).

If c is in [a, b] then this is called interpolation.

If c is outside [a, b] then this is called extrapolation.

a b

(a,f(a))

(b,(f(b))

c c

interpolation

extrapolation

Note: This is not the same idea as least squares line fitting.
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Interpolation-II
Linear Interpolation

Idea: Approximate f (x) by the
line segment between (a, f (a))
and (b, f (b)).

a b

(a,f(a))

(b,(f(b))

c

f(x)

S(x)

f (x) ≈ S(x) = f (a) +
f (b)− f (a)

b − a
(x − a)

so

f (c) ≈ f (a) +
f (b)− f (a)

b − a
(c − a)

=
b − c

b − a
f (a) +

c − a

b − a
f (b)



Lecture 1 Lecture 2 Lecture 3 Lecture 4

Interpolation-III
Example I

Vapour saturation pressure Psat(T ) where Psat is in bar and T is
in ◦C. Steam tables:

Psat(25) = 0.03168

Psat(30) = 0.04241

What is a good estimate of Psat(27)? Use linear interpolation.
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Interpolation-IV
Questions

Questions:

• How accurate is linear interpolation?

• How could we interpolate more accurately?

• If we use S(x) for extrapolation, how big are the errors we
make?
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Interpolation-V
Linear Interpolation Error

Interpolation/Extrapolation error using (a, f (a)) and
(a + h, f (a + h)):

f (x)− S(x) =
1

2
(x − a)(x − (a + h))f ′′(ξ)

(makes sense).

Interpolation error bound:

|f (x)− S(x)| ≤ h2

8
max

s∈[a,a+h]
|f ′′(s)|

The proof is an assignment question.



Lecture 1 Lecture 2 Lecture 3 Lecture 4

Interpolation-VI
Example II

Say you knew from tables that

sin(0.9) = 0.7833

sin(1) = 0.8415

And you wanted to estimate sin(0.95). Use linear interpolation:

sin(0.95) ≈ 1

2
(sin(0.9) + sin(1)) = 0.8124

Exact sin(0.95) = 0.8134, error ≈ 0.0010.

Error bound above is

0.12

8
sin(1) = 0.00105

Extrapolation is much less accurate. Using sin(0.9) and sin(1) to
estimate sin(0.8) gives an error of 0.0077.
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Fancy Interpolation
Quadratic Interpolation

If we knew the values of f (a− h), f (a), f (a + h) we could get a
more accurate interpolation in [a− h, a + h].

Idea: Use a quadratic approximation that has the same values as f
at the points x = a− h, a, a + h.

Q(x) = c0 + c1x + c2x
2

The coefficients are chosen so that

Q(a− h) = c0 + c1(a− h) + c2(a− h)2 = f (a− h)

Q(a) = c0 + c1a + c2a
2 = f (a)

Q(a + h) = c0 + c1(a + h) + c2(a + h)2 = f (a + h)

It’s a linear system for c0, c1 and c2! Could solve for the
coefficients, then use Q(x) to approximate f (x).
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Fancy Interpolation-II
Quadratic Interpolation (cont.)

In fact, there is an easier way to construct Q(x):

Q(x) =
(x − a)(x − (a + h))

2h2
f (a− h)

+ −(x − (a− h))(x − (a + h))

h2
f (a)

+
(x − (a− h))(x − a)

2h2
f (a + h)

The terms multiplying the values of f are called Lagrange
interpolating polynomials. Notes:
• The three points for quadratic interpolation do not have to be

equally spaced.
• The error bound is Ch3 max |f (3)|.
• Cubic and higher order interpolation can be done similarly.
• Interpolation formulae that are exact for order n polynomials

have errors of order hn+1
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Fancy Interpolation-III
Fancy Interpolation Example

Experimental measurements determine that a function f (x)
satisfies f (0) = 1, f ′(0) = 1, and f (1) = 3. Estimate f (1/2) using

(a) tangent line approximation.

(b) linear interpolation.

(c) a quadratic interpolation using all the information.
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Fancy Interpolation-IV
Fancy Interpolation Example (cont.)
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Richardson Extrapolation
Recall that

I − Tn ≈
C

N2

and a theoretical study like we did for Left Riemann sums shows
that

C = −(b − a)2

12

∫ b

a
f ′′(s)ds

so

TN ≈ I − C

N2
and T2N ≈ I − C

4N2

Notice that if we take

4

3
T2N −

1

3
TN ≈ I + (higher order error)

So the combination rule 4
3T2N − 1

3TN is much more accurate. It is
in fact Simpson’s rule S2N .
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Richardson Extrapolation-II
Another look at Richardson Extrapolation
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Richardson Extrapolation-III
Another look at Richardson Extrapolation (cont.)
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Differentiation

The derivative of a function is
given as

f ′(a) = lim
h→0

f (a + h)− f (a)

h

Graphical Interpretation of Derivative: the tangent line slope.

Applications of Derivatives: approximation, related rates,
optimization, differential equations
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Numerical Differentiation-II
Euler difference methods

f ′(a) = lim
h→0

f (a + h)− f (a)

h

Idea: take h small in the formula above (secant line slope
approximation to the tangent line slope).

Forward Euler Difference Approximation:

f ′(a) ≈ f (a + h)− f (a)

h

Backward Euler Difference Approximation:

f ′(a) ≈ f (a)− f (a− h)

h
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Numerical Differentiation-III
Example

Approximate
d

dx
sin x

at x = 1 using h = 0.1 using FE and BE.
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Numerical Differentiation-IV
Example (cont.)

Consider again the approximation of

d

dx
sin x

at x = 1. (exact value cos 1 = 0.5403).

h FE FE error BE BE error

1/10 0.4974 0.0429 0.5814 -0.0411
1/20 0.5190 0.0213 0.5611 -0.0208
1/40 0.5297 0.0106 0.5508 -0.0105
1/80 0.5350 0.0053 0.5455 -0.0052
1/160 0.5377 0.0026 0.5429 -0.0026

Note that errors decrease by 2 when h is halved (first order
methods) and that the errors for BE are almost equal in magnitude
but opposite in sign to those of FE.
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Numerical Differentiation-V
Centred Differencing

We would have a much more accurate approximation of the
derivative if we averaged FE and BE (the error would
approximately cancel).

f ′(a) ≈ 1

2

f (a + h)− f (a)

h
+

1

2

f (a)− f (a− h)

h
=

f (a + h)− f (a− h)

2h

this is known as the centred difference formula.
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Numerical Differentiation-VI
Error Estimates

The error estimates for difference formulae are easy to work out
using Taylor Polynomials:

f ′(a)− f (a + h)− f (a)

h
= −1

2
hf ′′(ξ)

f ′(a)− f (a)− f (a− h)

h
=

1

2
hf ′′(ξ)

f ′(a)− f (a + h)− f (a− h)

2h
= −1

6
h2f (3)(ξ)

Difference Formulae for first derivatives that are exact for order n
polynomials have errors of order hn
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Numerical Differentiation-VII
Proof of Difference Formula

f ′(a)− f (a + h)− f (a)

h
= −1

2
hf ′′(ξ)
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Numerical Differentiation-VIII
Roundoff Errors and Noise

Consider using FE to approximate

d

dx
sin x = cos x

at x = 1 (exact value cos 1 = 0.5403) as before, but now take h to
be very small.

h FE error

10−4 4.2e-5
10−6 6.9e-7
10−8 2.3e-6
10−10 0.030

The last large error is due to roundoff in the floating point
representation of numbers on my calculator.

Numerical differentiation is also very sensitive to noise in
experimental data values.
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More Difference Formulas
Example 1

Find the second order formula for f ′(a) when f (a), f (a− h) and
f (a− 2h) are known.
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More Difference Formulas-II
Example 1 (cont.)
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More Difference Formulas-III
Example 2

Second order formula for f ′′(a) when f (a), f (a− h) and f (a + h)
are known.
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More Difference Formulas-IV
Example 2 (cont.)
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Numerical Methods Summary

You now know how to approximate

• Integrals

• Derivatives

• Function values (interpolation)

using only discrete function values.
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