Mech 221: Computer Pre-Lab 6

Hand in the solutions to the two questions in the pre-lab at the beginning of

the lab.

In the upcoming lab, we will work with higher order linear systems of
differential equations. These arise in mechanical systems (coupled spring-
mass systems) and electrical circuits (coupled RLC circuits). We will see
how eigen-analysis can be useful to understand these systems. The pre-lab
will cover the following:

e Introduction to the MATLAB command eig that computes the eigen-
values and eigenvectors of a matrix.

e Review of the amplitude-phase form of solutions of damped spring-mass
systems.

e Application of eigen-analysis to the matrix from the equation of a
damped spring-mass system written as a first order system. The results
can be used to understand the behaviour of the system.

e Continuing to build your skill at rewriting second order differential
equations as systems of first order differential equations. Here, you will
be rewriting two coupled second order equations that describe a mass-
spring system with two degrees of freedom as a first order system with
four unknowns.

The MATLAB command eig
When applied to a square matrix A, eig(A) will return the eigenvalues
and the eigenvectors of A. To use this command enter the following in

MATLAB:
>> [P,D] = eig(A)

What will be returned is a matrix P with the normalized (unit length) eigen-
vectors of A in its columns, and a matrix D with the eigenvalues of A along
it’s diagonal. The eigenvalue corresponding to the ¥ column of P is found
in the (7,¢) position of D.

Example 1: Consider A
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We can enter A into MATLAB and find its eigenvectors and eigenvalues with
the following commands:

>> A=[145; 6 39; 27 8];
>> [P,D] = eig(A)

P =
-0.3919 -0.5895 0.2238
-0.6401 -0.5446 -0.8511
-0.6609 0.5966 0.4750

D =
15.9657 0 0

0 -0.3653 0
0 0 -3.6004

These results tell us that A has eigenvectors {v;, vy, v3} and corresponding
eigenvalues {1, A2, A3} as follows:

—0.3919 —0.5805 0.2238

{v1, 09,03} = —0.6401 |,| —0.5446 |,| —0.8511 (2)
—0.6609 0.5966 0.4750

(A1, Ao, A3t = {15.9657, —0.3653, —3.6004} (3)

Review and Eigen-Analysis of a Damped Spring-Mass System
Consider a simple harmonic oscillator with damping. The governing equa-
tion is given by:
mi+ gt +kxr =0, m,bk>0 (4)
where z is the displacement of the oscillator with mass m from equilibrium.
(£ and k are the damping and spring constants respectively. Let us consider
a specific example:

Example 2: Consider a scaled version of (4) that leads to the equation

T4+yr+2x=0 (5)
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where v = 0.1.

To find solutions of (5) in Example 2 above we write the auxiliary equation
r+01r+1=0

which has complex roots 712 = a £ b with a = —0.05 and b ~ 0.9987. The
fact that the roots are complex means that the system described by (5) is
under-damped. We can now write the general solution of (5):

z(t) = e (c1 cos(bt) + ¢y sin(bt))
or written in amplitude-phase form
z(t) = Re® cos(bt + ¢). (6)

Here, the two constants R and ¢ replace the two constants c¢; and ¢y in
the first form in the description of the solution. The angular frequency b
and the decay rate a of solutions to the damped spring-mass system are
of physical importance. For this single spring-mass system, these are easily
found as roots of the quadratic auxiliary equation as done above. They can be
estimated from solution curves as shown in question #1 below. An alternate
technique to find the angular frequency b and the decay rate a of solutions
using eigen-analysis is described below. This technique can be applied to
spring-mass systems with more than one degree of freedom as shown later in
the pre-lab.

If we wanted to compute numerical solutions of (5) of Example 2 we would
write it as a first order system in the usual way:

ilﬁ]:l—x—j&ljﬁ]' ()

Note that the right hand side of the vector equation above can be written as
matrix multiplication

T 0 1
A[x] where A:l_l _0‘1].

It is always possible to write first order, linear, constant coefficient, inho-
mogeneous differential equations in terms of matrix multiplication. Such
systems can be solved using eigen-analysis. If the matrix A is typed into



MATLAB and its eigenvalues calculated, the results are —0.0500 =+ 70.9987.
Note that these are exactly a &+ b for the problem written as a second order
scalar equation. Convince yourself that this is what should happen.

Question 1: Identifying Frequency and Decay Rate from Solution
Plots

The figure below contains four plots of functions of the form (6). Match
the plots to the values of b and a below.

(a) a=0,b=1
(b) a=-0.1,0=1
(c) a=-01,b=2
(d) a=-1,b=2

e Hand in the match of plots to values of a and b listed above as your
answer for this question.

plotA plotB
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Figure 1: Plots to match to values of a and b in Question #1



Coupled Oscillators

Consider now two masses mq, ms in a box. Let them be mutually coupled
by a spring with spring constant K. Further, let m; be coupled to a wall by
a spring of constant k; and let my be coupled to the opposite wall by a spring
of constant ks, so that both masses are in a line as shown in Figure 2. Let
x(t) and y(t) be the displacements of masses m;, my from their corresponding
equilibrium positions in this configuration.

Figure 2: Coupled spring mass system with two masses.

Using Newton’s Second Law, we can derive the following pair of differen-
tial equations that govern their behaviour.

mi = —kx— K(z—vy)— i (8)
maj = K(z—y)—ky— 02y

where (3 and 35 are the coefficients of damping in the motion of the corre-
sponding masses. Note that these damping terms are not the same as the
frictional forces in the earlier lab. If the (scaled) values of ) and (3, are
small, the solution component z(¢) above will have the form

x(t) = Rie™* cos(bit + ¢1) + Roe™' cos(bat + ¢). 9)

Note that this solution is a superposition of two decaying, oscillatory parts
with (in general) different decay rates a; » and angular frequencies by 5. The
solution for y(¢) has a similar form. The values a; » and b; 5 are important in
an application (the decay rates and angular frequencies of oscillations in the
system). An example of such a solution is shown in Figure 3. You can see
that it would be hard to identify the values of a; o and b; o from such a plot
as we were able to do in Question #1. You will learn how to do this with
eigen-analysis in Lab #6.



Coupled Spring Mass System

Figure 3: An example solution to the coupled oscillator (8) in the form (9).

Question 2: Coupled Oscillators

e Write the second order system (8) as a first order vector valued differ-
ential equation. (Hint: Let 21 = 2,29 = &, 25 = y, x4 = 1)

e The system you wrote above can be written in matrix form
x = Ax
where x is the column vector of the four components x1, x2, 3 and x4.

e Hand in the matrix A as your answer to this question

Note: For specific values of mq, mas, k1, ko, K, 31 and 35 the 4 x 4 matrix A
can be entered into MATLAB and its eigenvalues computed. If the damping
is small, the eigenvalues of A will come in two complex pairs a; + ib; and
as £ iby. Thus, eigen-analysis of A will give us the decay rates and angular
frequencies we are interested in.

Additional Note: The matrix of eigenvectors of A can be used to solve (8)
with initial conditions. It also gives a description how the oscillations for z
and y are coupled. Due to time constraints on this lab, we won’t be working
with the eigenvectors (although it would be interesting and useful).
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Coming up in Lab #6
Completing the pre-lab will prepare you for the lab, in which the following
will be covered:

e Using eigenvalues to assess qualitative behaviour of coupled systems of
oscillators.



