
Mech 221: Computer Pre-Lab 6
Hand in the solutions to the two questions in the pre-lab at the beginning of
the lab.

In the upcoming lab, we will work with higher order linear systems of
differential equations. These arise in mechanical systems (coupled spring-
mass systems) and electrical circuits (coupled RLC circuits). We will see
how eigen-analysis can be useful to understand these systems. The pre-lab
will cover the following:

• Introduction to the MATLAB command eig that computes the eigen-
values and eigenvectors of a matrix.

• Review of the amplitude-phase form of solutions of damped spring-mass
systems.

• Application of eigen-analysis to the matrix from the equation of a
damped spring-mass system written as a first order system. The results
can be used to understand the behaviour of the system.

• Continuing to build your skill at rewriting second order differential
equations as systems of first order differential equations. Here, you will
be rewriting two coupled second order equations that describe a mass-
spring system with two degrees of freedom as a first order system with
four unknowns.

The MATLAB command eig

When applied to a square matrix A, eig(A) will return the eigenvalues
and the eigenvectors of A. To use this command enter the following in
MATLAB:

>> [P,D] = eig(A)

What will be returned is a matrix P with the normalized (unit length) eigen-
vectors of A in its columns, and a matrix D with the eigenvalues of A along
it’s diagonal. The eigenvalue corresponding to the ith column of P is found
in the (i, i) position of D.

Example 1: Consider A

A =

 1 4 5
6 3 9
2 7 8

 (1)
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We can enter A into MATLAB and find its eigenvectors and eigenvalues with
the following commands:

>> A=[1 4 5; 6 3 9; 2 7 8];

>> [P,D] = eig(A)

P =

-0.3919 -0.5895 0.2238

-0.6401 -0.5446 -0.8511

-0.6609 0.5966 0.4750

D =

15.9657 0 0

0 -0.3653 0

0 0 -3.6004

These results tell us that A has eigenvectors {v1, v2, v3} and corresponding
eigenvalues {λ1, λ2, λ3} as follows:

{v1, v2, v3} =


 −0.3919
−0.6401
−0.6609

 ,

 −0.5895
−0.5446
0.5966

 ,

 0.2238
−0.8511
0.4750


 (2)

{λ1, λ2, λ3} = {15.9657,−0.3653,−3.6004} (3)

Review and Eigen-Analysis of a Damped Spring-Mass System
Consider a simple harmonic oscillator with damping. The governing equa-

tion is given by:
mẍ + βẋ + kx = 0, m, b, k > 0 (4)

where x is the displacement of the oscillator with mass m from equilibrium.
β and k are the damping and spring constants respectively. Let us consider
a specific example:

Example 2: Consider a scaled version of (4) that leads to the equation

ẍ + γẋ + x = 0 (5)

2



where γ = 0.1.

To find solutions of (5) in Example 2 above we write the auxiliary equation

r2 + 0.1r + 1 = 0

which has complex roots r1,2 = a ± ib with a = −0.05 and b ≈ 0.9987. The
fact that the roots are complex means that the system described by (5) is
under-damped. We can now write the general solution of (5):

x(t) = eat (c1 cos(bt) + c2 sin(bt))

or written in amplitude-phase form

x(t) = Reat cos(bt + φ). (6)

Here, the two constants R and φ replace the two constants c1 and c2 in
the first form in the description of the solution. The angular frequency b
and the decay rate a of solutions to the damped spring-mass system are
of physical importance. For this single spring-mass system, these are easily
found as roots of the quadratic auxiliary equation as done above. They can be
estimated from solution curves as shown in question #1 below. An alternate
technique to find the angular frequency b and the decay rate a of solutions
using eigen-analysis is described below. This technique can be applied to
spring-mass systems with more than one degree of freedom as shown later in
the pre-lab.

If we wanted to compute numerical solutions of (5) of Example 2 we would
write it as a first order system in the usual way:

d

dt

[
x
ẋ

]
=

[
ẋ

−x− 0.1ẋ

]
. (7)

Note that the right hand side of the vector equation above can be written as
matrix multiplication

A

[
x
ẋ

]
where A =

[
0 1
−1 −0.1

]
.

It is always possible to write first order, linear, constant coefficient, inho-
mogeneous differential equations in terms of matrix multiplication. Such
systems can be solved using eigen-analysis. If the matrix A is typed into
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MATLAB and its eigenvalues calculated, the results are −0.0500 ± i0.9987.
Note that these are exactly a± ib for the problem written as a second order
scalar equation. Convince yourself that this is what should happen.

Question 1: Identifying Frequency and Decay Rate from Solution
Plots

The figure below contains four plots of functions of the form (6). Match
the plots to the values of b and a below.

(a) a = 0, b = 1

(b) a = −0.1, b = 1

(c) a = −0.1, b = 2

(d) a = −1, b = 2

• Hand in the match of plots to values of a and b listed above as your
answer for this question.

Figure 1: Plots to match to values of a and b in Question #1
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Coupled Oscillators
Consider now two masses m1, m2 in a box. Let them be mutually coupled

by a spring with spring constant K. Further, let m1 be coupled to a wall by
a spring of constant k1 and let m2 be coupled to the opposite wall by a spring
of constant k2, so that both masses are in a line as shown in Figure 2. Let
x(t) and y(t) be the displacements of masses m1, m2 from their corresponding
equilibrium positions in this configuration.

Figure 2: Coupled spring mass system with two masses.

Using Newton’s Second Law, we can derive the following pair of differen-
tial equations that govern their behaviour.

m1ẍ = −k1x−K(x− y)− β1ẋ (8)

m2ÿ = K(x− y)− k2y − β2ẏ

where β1 and β2 are the coefficients of damping in the motion of the corre-
sponding masses. Note that these damping terms are not the same as the
frictional forces in the earlier lab. If the (scaled) values of β1 and β2 are
small, the solution component x(t) above will have the form

x(t) = R1e
a1t cos(b1t + φ1) + R2e

a2t cos(b2t + φ2). (9)

Note that this solution is a superposition of two decaying, oscillatory parts
with (in general) different decay rates a1,2 and angular frequencies b1,2. The
solution for y(t) has a similar form. The values a1,2 and b1,2 are important in
an application (the decay rates and angular frequencies of oscillations in the
system). An example of such a solution is shown in Figure 3. You can see
that it would be hard to identify the values of a1,2 and b1,2 from such a plot
as we were able to do in Question #1. You will learn how to do this with
eigen-analysis in Lab #6.
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Figure 3: An example solution to the coupled oscillator (8) in the form (9).

Question 2: Coupled Oscillators

• Write the second order system (8) as a first order vector valued differ-
ential equation. (Hint: Let x1 = x, x2 = ẋ, x3 = y, x4 = ẏ)

• The system you wrote above can be written in matrix form

ẋ = Ax

where x is the column vector of the four components x1, x2, x3 and x4.

• Hand in the matrix A as your answer to this question

Note: For specific values of m1, m2, k1, k2, K, β1 and β2 the 4×4 matrix A
can be entered into MATLAB and its eigenvalues computed. If the damping
is small, the eigenvalues of A will come in two complex pairs a1 ± ib1 and
a2 ± ib2. Thus, eigen-analysis of A will give us the decay rates and angular
frequencies we are interested in.

Additional Note: The matrix of eigenvectors of A can be used to solve (8)
with initial conditions. It also gives a description how the oscillations for x
and y are coupled. Due to time constraints on this lab, we won’t be working
with the eigenvectors (although it would be interesting and useful).
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Coming up in Lab #6
Completing the pre-lab will prepare you for the lab, in which the following

will be covered:

• Using eigenvalues to assess qualitative behaviour of coupled systems of
oscillators.
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