
Mech 221: Computer Pre-Lab 5
Hand in the solutions to the two questions in the pre-lab at the beginning of
the lab.

In the upcoming lab, we will continue to work on solving systems of
Differential Equations using MATLAB. We will consider specifically systems
in which there are forcing terms that depend discontinuously on time and on
the variables. This pre-lab will cover the following topics:

• How to use “if” statements in MATLAB.

• A discussion of how the MATLAB routine ode45 works.

• Solving differential equations analytically that include discontinuous
terms.

if-else blocks in MATLAB
In some computations it may be necessary to carry out one procedure

based on whether a condition is satisfied, and perhaps carry out a different
procedure if the condition is not satisfied. In general the calling sequence in
MATLAB is as follows:

if (<condition>)

<code to executed if <condition> is true>

else

<code to executed if <condition> is false>

end

The conditions have the same syntax as those in while loops discussed in
pre-lab #3. It should be noted that if you want to do nothing in the event
that your condition fails, you have the option to leave out the else (...)

portion of your code, giving you:

if (<condition>)

<code to executed if <condition> is true>

end

Consider the absolute value function as an example. How do we determine
the absolute value of a number x? From previous courses, we know that if
x ≥ 0, the absolute value of x, |x| equals x or else |x| equals −x. If we
were going get MATLAB to compute the value of |x|, we would create the
following .m file function:

1

function y = myAbs(x)

if (x >= 0)

y = x

else

y = -x

end

This returns the same result as the MATLAB built-in function abs when x
is a scalar.

How ode45 works
The MATLAB routine, ode45, approximates differential equations using

a six stage, fourth order accurate Runge-Kutta method. The six stages also
allow the computation of a fifth order method. A comparison of these two
methods allow an estimation of the error made in a single time step. If
this error is too large (larger than a default local error tolerance that can
be changed by the user in an option) then the time step is repeated with a
smaller time step (which would give a smaller error). This process is repeated
until a step is taken with an acceptable error. If the predicted error is much
smaller than the tolerance, subsequent step sizes will be taken cautiously to
be larger.

Consider solving the problem

ÿ + y = 0, y(0) = 1, ẏ(0) = 0 (1)

as you did in lab #4. The call

[t,y] = ode45(’vfunc’,[0 10], [0 1]’);

approximated this problem. We can get an idea of how ode45 works by
looking at the variable time steps h that it took. To do this, the following
code is used:

N = max(size(t))-1;

h = t(2:(N+1))-t(1:N);

plot(t(1:N),h)

The computation takes N = 72 steps, and the plot generated above is shown
in Figure 1 (axes labels were added and the line thickness and fonts were

2

Figure 1: Time step sizes for the unforced oscillator (1) computed using
ode45.

changed using the figure interface). Notes that the time steps start small (the
MATLAB default 0.0001) then increase slowly as MATLAB determines that
these step sizes are smaller than needed for the specified default accuracy.
The step sizes then plateau at the level that provide the default accuracy.
The dip in the size of time step at the end is just to reach the specified time
10 in the ode45 call. Similar time step plots will be shown and discussed for
two other problems below.

A Discontinuously Forced Oscillator
There are many examples of mathematical modelling where ‘switching’

plays an important role. By switching, we mean a discontinuous change of
a system parameter or forcing function. For example, the current flowing
through a circuit as it is closed, then opened. The Heaviside function, H(t),
is an important example of a discontinuous function and is defined as follows:

H(t) =

{
1 if t ≥ 0
0 if t < 0

(2)

Consider the oscillator equation subject to a Heaviside forcing at time,

3

Figure 2: Time step sizes for the discontinuously forced oscillator (3) com-
puted using ode45.

t = 2.
ÿ + y = H(t− 2), y(0) = 1, ẏ(0) = 0, 0 ≤ t ≤ 10 (3)

You will solve this problem analytically as a pre-lab question below, and
compute solutions numerically with ode45 in the lab. When you do the
computation you will find that it takes N = 76 steps, and a plot of time steps
generated as described above is shown in Figure 2. Note the same features
as in Figure 1 except that much smaller steps are used near t = 2. The high
order methods used in ode45 are based on differentiability of the Differential
Equation right hand side function. When this function is discontinuous, the
method can recognize this and must take smaller time steps to get the desired
accuracy.

How would you solve this problem analytically? You have previously
encountered problems where you have had to solve Differential Equations
with discontinuous terms, but so far they have only been scalar, first order
examples. The same procedure is used for higher order problems and systems.
Let us review this procedure for this example. First you solve the problem
for all t ≤ 2, (i.e. before the Heaviside force is activated). In other words,

4

the following linear, homogeneous, constant coefficient problem is solved:

ÿ + y = 0, y(0) = 1, ẏ(0) = 0, 0 ≤ t ≤ 2 (4)

Let y = y1(t) be the solution for the above problem. Then you take the data
(y1(2), ẏ1(2)) which you have just solved for. Use it as the initial condition for
the problem when t ≥ 2,(i.e: when the Heaviside forcing has been activated):

ÿ + y = 1, y(2) = y1(2), ẏ(2) = ẏ1(2), 2 ≤ t ≤ 10 (5)

Use the Method of Undetermined Coefficients to solve this problem. Call
the solution for this problem y(t) = y2(t). We now piece together the total
solution defining it as follows.

y(t) =

{
y1(t) if 0 ≤ t ≤ 2
y2(t) if t > 2

(6)

You can piece together approximations of these two smooth (no discontinu-
ities) problems using two calls to ode45 but in this example there is no reason
to do so.

Question 1

• Find y1(t),y2(t) and thus find y(t) on 0 ≤ t ≤ 10 for the switching
oscillator described above. You will use your answer to check your
MATLAB code in the lab.

• Rewrite (3) as a first order vector differential equation. You will need
to remember this for the lab.

• Hand in the two part solution for y(t) found above and the first order
system version of (3).

An Oscillator with Friction
Consider an oscillator subject to friction. We consider here not damping

(which is often modelled as a force proportional to velocity) but surface fric-
tion, which is a constant force acting in the direction opposite to the motion
or holding an object at rest unless that force is exceeded. In this discussion
we don’t consider the difference between static friction and dynamic friction.

5

A scaled equation that governs an oscillator subject to friction is given
by:

ÿ + y = F (y, ẏ) y(0) = 1, ẏ(0) = 0 (7)

The frictional force is scaled to β = 0.3. If ẏ > 0 then F = −β; if ẏ < 0 then
F = β (the friction force opposes the motion if the object is in motion). If
ẏ = 0 (the mass is not moving) there are three cases to consider:

1. if |y| ≤ β then F = y (the spring force −y cannot overcome the fric-
tional force and the mass stays at rest).

2. if y > β then F = β.

3. if y < −β then F = −β.

You will solve this problem analytically as a pre-lab question below, and
compute solutions numerically with ode45 in the lab. When you do the
computation you will find that it takes N = 155936 (!) steps, and a plot of
time steps generated as described above is shown in Figure 3. Time steps
get shorter at the discontinuity in F when the mass changes direction. The
time steps are extremely short (h ≈ 0.0001) when the mass stops moving.
Explaining this behaviour is part of a question on the lab.

To solve this problem analytically, we would do the following. Given
the initial conditions evaluate the behaviour of the oscillator. Is it moving?
Will it begin to move if it is not already moving? (that is, will it overcome
friction?) In the case when it will move and is not already moving, you solve
the oscillator equation as though the object were already moving. In other
words, If ẏ = 0, then evaluate the differential equation to see if the object
will accelerate, and in which direction. If it will accelerate, then solve the
differential equation as though ẏ 6= 0. Get the solution until the next time
when ẏ = 0, then re-evaluate. If it will not accelerate, then you know the
oscillator is stationary for all time following.

Question 2: A Oscillator with Friction

• Solve (7) with the frictional force with β = 0.3. Be sure to identify the
final position of the mass (when friction holds it in place). You will use
your answer to check your MATLAB code in the lab.

• Hand in the solution above, identifying clearly the final position of the
mass.

6

Figure 3: Time step sizes for the oscillator with surface friction (7) computed
using ode45.

Coming up in Lab #5
Completing the pre-lab will prepare you for the lab, in which the following

will be covered:

• Using an “if” statement within a function.

• Solving a DE that has a non-continuous time-dependence.

• Analyzing the numerical solution to the oscillator with friction example.

7

