
Mech 221: Computer Pre-Lab 4
Hand in the solutions to the two questions in the pre-lab at the beginning of
the lab.

In the upcoming lab, you will solve systems of linear equations numerically
using code built into MATLAB, as well as the Forward Euler algorithm. More
specifically, this pre-lab will cover:

• Accessing elements of matrix in MATLAB: individual entries, rows and
columns.

• The MATLAB command legend that will enhance figures with many
plots on them.

• An introduction to “ode45”, a numerical differential equation solver
built into MATLAB.

• Transforming second and higher order ODEs into first-order systems of
equations. First order systems can be solved with ode45.

MATLAB commands to know for the lab

A(1,2) : If A is an n × m matrix in MATLAB (n rows and m columns) this
will return the value in the first row, second column.

A(1,:) : If A is an n × m matrix in MATLAB (n rows and m columns) this
will return the first row as a vector (a row vector of length m).

A(:,2) : If A is an n × m matrix in MATLAB (n rows and m columns) this
will return the second column as a vector (a column vector of length
n).

legend : This command has many options, we will start with the simplest
way to use it. Once you have finished plotting all of your plots on the
same figure (remember to use hold on), remember the order that you
plotted them in. Once you have the names of your plots, type in the
following command:

legend(’name1’,’name2’,...);

1



where name1, name2, ... are the names of the plots that will appear
in the legend. The ordering of their entry into the legend command
corresponds to the order by which you plotted them (i.e: name1 will
correspond to the line first drawn in the figure). To take the legend
away, type in >> legend off.

The MATLAB command ode45 that approximates solutions of Dif-
ferential Equations

Given a function f , an interval [a, b], and initial condition c, MATLAB
has built-in routines to solve

ẏ = f(t, y), y(a) = c, a ≤ t ≤ b (1)

MATLAB can be used to find approximate solutions to vector DEs, but let’s
start with this scalar DE first. A general purpose algorithm is in ode45,
which can be called using the following syntax where a, b and c have been
defined with the scalar values from the problem above.

[t,y] = ode45(’func’,[a b], c);

The elements of this call are discussed below from left to right

• ode45 is a MATLAB function that returns two vector outputs. The
square brackets with the comma separator on the left is how you can
assign these two outputs to named variables t and y.

• t is a column vector containing time values between a and b at which
the solution was computed.

• y is vector of the same length as t containing corresponding y values.
The command plot(t,y) would then plot the approximate solution
between a and b.

• func is the name of an .m file function with two arguments (t and y)
that returns the value f(t, y).

Let us look at a vector first order DE with two components y1(t) and
y2(t) also solved for t between a and b.

ẏ1 = f1(t, y1, y2), y1(a) = c1

ẏ2 = f2(t, y1, y2), y2(a) = c2

2



As seen below (and in the lectures), second order scalar equations can be con-
verted to first order systems with 2 components. Third order scalar equations
can be converted to first order systems with 3 components, etc. In this way,
higher order problems can be approximated with numerical methods.

To approximate the two component problem above, the intial data c1 and
c2 must be put into a column vector:

c = zeros(2,1);

c(1) = c1;

c(2) = c2;

The command c = [c1 c2]’ would have the same result. The call to ode45

has the same syntax as the scalar case

[t,y] = ode45(’func2’,[a b], c);

where t is a column vector of times at which the solution is computed as
before and

• y is now a matrix with 2 columns and a number of rows equal to the
size of t. y(:,1) contains the approximation of y1 in a column vector
at the corresponding times, y(:,2) the approximation of y2. y(4,:)

is a row vector with the approximate values y1(t) and y2(t) at the time
t(4). The command plot(t,y) will plot two curves, y1(t) in blue and
y2(t) in green.

• func2 is the name of an .m file function with two arguments (t and y)
where y will be a column vector with two components y1 and y2. The
function must return a column vector with two entries f1(t, y1, y2) and
f2(t, y1, y2).

ODE systems with more than two components follow the same pattern.

Transforming a higher-order DE to a first order system

The solver can only deal with first-order equations, but it compensates for
this by working with vector-valued unknown functions as descriobed above.
A scalar ODE with lots of derivatives can be transformed into a first-order
vector ODE with lots of components. Here’s how.

3



Consider an nth order ODE:

dny

dtn
= f

(
t, y,

dy

dt
, ...,

dn−1y

dtn−1

)
(2)

Now, consider a new set of variables {x1, x2, · · ·xn}, and define them the
following way.

x1 = y, x2 =
dy

dt
, ... , xn =

dn−1y

dtn−1
(3)

Now consider what happens when we differentiate these variables {xn} with
respect to t:

dx1

dt
= x2,

dx2

dt
= x3, ... ,

dxn−1

dt
= xn (4)

dxn

dt
= f (t, x1, x2, ..., xn) (5)

Notice that we now have a vector-valued, first-order ODE which we can solve
with ode45.

Example: Consider the following ODE:

ÿ + y = 0 y(0) = 1 ẏ(0) = 0 (6)

The solution for this problem is y(t) = cos t. If we want to test ode45 on this
known solution we must first transform this problem into a linear system.
Following the notes above, we introduce x1 = y and x2 = ẏ. For these
variables, initial conditions are given: x1(0) = 1 and x2(0) = 0. Remember to
put these values into a column vector before using them as the last argument
of ode45. Now by this choice of variables, ẋ1 = x2. Since x2 = ẏ when we
consider ẋ2 we see that it is ÿ which by the DE is equal to −y which is −x1.
Summarizing

ẋ1 = f1(t, x1, x2) = x2 (7)

ẋ2 = f2(t, x1, x2) = −x1 (8)

When you write your MATLAB function for the RHS of this system, don’t
forget to put the vector ~f = (x2,−x1) in a column.

Question 1: Transforming a third-order ODE

4



Transform the third order equation for y(t) given by

y′′′ + ety′′ + cos(y) = 0

into a first order system with three components. Hand in the resulting system
and your work. Note that in lab #4 you will be solving such a third order
equation numerically (but not this one).

Question 2: RLC Circuit
An RLC circuit is an electric circuit in which a resistor, capacitor and

inductor are hooked up in series. This circuit is (or will be) the object of
study in your Electronics lectures due to it’s oscillatory properties. For an
RLC circuit, we have the following equations:

VL + VC + VR = 0, VL = Lİ, VR = IR, V̇C = I/C (9)

which, after setting V = VC , leads to the system of equations

V̇ = 1
C
I

İ = − 1
L
V − R

L
I.

(10)

Suppose that R = 4, L = 2, C = 0.5, and that the initial conditions are
given by V (0) = 2, I(0) = 1.

• Combine the system (10) to get a second order equation for I.

• Rewrite the system in the form ~̇X = A ~X for a 2 × 2 matrix A (Make

sure to define ~X appropriately).

• Show that the exact solution is given by(
V (t)
I(t)

)
=

(
2e−t + 4te−t

e−t − 2te−t

)
(11)

• Hand in the expression you obtain for the second order equation for I
and the matrix form of the system you derived above. Show all your
work. Show carefully that the functions for V and I above satisfy the
DE system.

Coming up in Lab #4
Completing the pre-lab will prepare you for the lab, in which the following

will be covered:

5



• Learning how to use ode45.

• Using the Forward Euler method to solve a system of ODEs.

• Using ode45 to solve a system of ODEs.

• Converting a new third order DE to a system with three components
and finding its solution.

6


